Loading…

Boosted backtracking search optimization with information exchange for photovoltaic system evaluation

The determination of photovoltaic (PV) parameters is of great importance for the reliability of solar system operation, continuity of the load power consumption, and control management of the energy source. Therefore, this study proposes an advanced backtracking search optimization algorithm (BSA) e...

Full description

Saved in:
Bibliographic Details
Published in:Energy science & engineering 2023-01, Vol.11 (1), p.267-298
Main Authors: Weng, Xuemeng, Liu, Yun, Heidari, Ali Asghar, Cai, Zhennao, Lin, Haiping, Chen, Huiling, Liang, Guoxi, Alsufyani, Abdulmajeed, Bourouis, Sami
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3989-6f71c0b833acc4ba155aa0e0c30a40099c08d47118e71a861b050c29efb3c4193
cites cdi_FETCH-LOGICAL-c3989-6f71c0b833acc4ba155aa0e0c30a40099c08d47118e71a861b050c29efb3c4193
container_end_page 298
container_issue 1
container_start_page 267
container_title Energy science & engineering
container_volume 11
creator Weng, Xuemeng
Liu, Yun
Heidari, Ali Asghar
Cai, Zhennao
Lin, Haiping
Chen, Huiling
Liang, Guoxi
Alsufyani, Abdulmajeed
Bourouis, Sami
description The determination of photovoltaic (PV) parameters is of great importance for the reliability of solar system operation, continuity of the load power consumption, and control management of the energy source. Therefore, this study proposes an advanced backtracking search optimization algorithm (BSA) equipped with teaching and learning‐based optimization (TLBO), named TLBOBSA, to accurately simulate the PV model. During the evaluation of the proposed algorithm, the concept of teaching from TLBO is introduced into the BSA to guide optimal individuals, thus improving the convergence rate of the algorithm. The learning behavior among individuals in the student phase of TLBO facilitates interindividual learning and provides beneficial information for its evolution, which is introduced into the BSA to ensure the diversity of the population. The comprehensive test results of different PV module models in different environmental conditions show that the proposed algorithm is more advantageous for parameter extraction than other existing algorithms. This can be seen in the simulation experiments of two commercial PV models, where the simulated current is consistent with the measured current at each measured voltage. This demonstrates that the proposed TLBOBSA is an accurate and reliable tool for evaluating unknown parameters of PV models. (1) An improved backtracking search algorithm with teaching and learning‐based optimization (TLBOBSA) is proposed to extract parameters of the photovoltaic system. (2) The performance of TLBOBSA is compared with some well‐known competitive algorithms. (3) TLBOBSA was evaluated under different irradiance levels and temperature levels. (4) TLBOBSA has improved the convergence speed and obtained optimal accuracy among all competitive algorithms.
doi_str_mv 10.1002/ese3.1329
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e249434ee5d342249b0217861e8eb2b8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e249434ee5d342249b0217861e8eb2b8</doaj_id><sourcerecordid>2766040288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3989-6f71c0b833acc4ba155aa0e0c30a40099c08d47118e71a861b050c29efb3c4193</originalsourceid><addsrcrecordid>eNp1kU9PGzEQxa0KpKKUQ7-BJU49BMZ_Nrs-UhRaJCQOwNmadWYTp5t1ajvQ8OlxslXVCweP7aefn2f0GPsq4FIAyCtKpC6FkuYTO5NQwbSs6uS_82d2ntIaAIQW2oA4Y_Q9hJRpwVt0v3IsxQ9LngijW_GwzX7j3zD7MPBXn1fcD12Im1GgP26Fw5J4kfh2FXJ4CX1G73jaF8sNpxfsd0f2CzvtsE90_nefsOfb-dPNz-n9w4-7m-v7qVOmMdNZVwsHbaMUOqdbFFWFCAROAWoAYxw0C10L0VAtsJmJtgzlpKGuVU4LoybsbvRdBFzbbfQbjHsb0NujEOLSYsze9WRJaqOVJqoWSstyaUGKunhSQ60sPUzYxei1jeH3jlK267CLQ2nfyno2Aw2yOVDfRsrFkFKk7t-vAuwhFHsIxR5CKezVyL76nvYfg3b-OFfHF-8OjI4t</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766040288</pqid></control><display><type>article</type><title>Boosted backtracking search optimization with information exchange for photovoltaic system evaluation</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Weng, Xuemeng ; Liu, Yun ; Heidari, Ali Asghar ; Cai, Zhennao ; Lin, Haiping ; Chen, Huiling ; Liang, Guoxi ; Alsufyani, Abdulmajeed ; Bourouis, Sami</creator><creatorcontrib>Weng, Xuemeng ; Liu, Yun ; Heidari, Ali Asghar ; Cai, Zhennao ; Lin, Haiping ; Chen, Huiling ; Liang, Guoxi ; Alsufyani, Abdulmajeed ; Bourouis, Sami</creatorcontrib><description>The determination of photovoltaic (PV) parameters is of great importance for the reliability of solar system operation, continuity of the load power consumption, and control management of the energy source. Therefore, this study proposes an advanced backtracking search optimization algorithm (BSA) equipped with teaching and learning‐based optimization (TLBO), named TLBOBSA, to accurately simulate the PV model. During the evaluation of the proposed algorithm, the concept of teaching from TLBO is introduced into the BSA to guide optimal individuals, thus improving the convergence rate of the algorithm. The learning behavior among individuals in the student phase of TLBO facilitates interindividual learning and provides beneficial information for its evolution, which is introduced into the BSA to ensure the diversity of the population. The comprehensive test results of different PV module models in different environmental conditions show that the proposed algorithm is more advantageous for parameter extraction than other existing algorithms. This can be seen in the simulation experiments of two commercial PV models, where the simulated current is consistent with the measured current at each measured voltage. This demonstrates that the proposed TLBOBSA is an accurate and reliable tool for evaluating unknown parameters of PV models. (1) An improved backtracking search algorithm with teaching and learning‐based optimization (TLBOBSA) is proposed to extract parameters of the photovoltaic system. (2) The performance of TLBOBSA is compared with some well‐known competitive algorithms. (3) TLBOBSA was evaluated under different irradiance levels and temperature levels. (4) TLBOBSA has improved the convergence speed and obtained optimal accuracy among all competitive algorithms.</description><identifier>ISSN: 2050-0505</identifier><identifier>EISSN: 2050-0505</identifier><identifier>DOI: 10.1002/ese3.1329</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Design ; Diodes ; Efficiency ; Electrical measurement ; Energy sources ; Environment models ; Environmental conditions ; Evaluation ; Feature selection ; Genetic algorithms ; Machine learning ; metaheuristics ; Neural networks ; Optimization ; Optimization algorithms ; Parameter estimation ; parameter extraction ; Parameter identification ; Parameters ; Photovoltaic cells ; photovoltaic models ; Photovoltaics ; Power consumption ; R&amp;D ; Research &amp; development ; Simulation ; solar cell ; Solar energy ; swarm intelligence ; Traveling salesman problem</subject><ispartof>Energy science &amp; engineering, 2023-01, Vol.11 (1), p.267-298</ispartof><rights>2022 The Authors. published by the Society of Chemical Industry and John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3989-6f71c0b833acc4ba155aa0e0c30a40099c08d47118e71a861b050c29efb3c4193</citedby><cites>FETCH-LOGICAL-c3989-6f71c0b833acc4ba155aa0e0c30a40099c08d47118e71a861b050c29efb3c4193</cites><orcidid>0000-0002-7714-9693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2766040288/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2766040288?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11542,25732,27903,27904,36991,44569,46030,46454,74872</link.rule.ids></links><search><creatorcontrib>Weng, Xuemeng</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Heidari, Ali Asghar</creatorcontrib><creatorcontrib>Cai, Zhennao</creatorcontrib><creatorcontrib>Lin, Haiping</creatorcontrib><creatorcontrib>Chen, Huiling</creatorcontrib><creatorcontrib>Liang, Guoxi</creatorcontrib><creatorcontrib>Alsufyani, Abdulmajeed</creatorcontrib><creatorcontrib>Bourouis, Sami</creatorcontrib><title>Boosted backtracking search optimization with information exchange for photovoltaic system evaluation</title><title>Energy science &amp; engineering</title><description>The determination of photovoltaic (PV) parameters is of great importance for the reliability of solar system operation, continuity of the load power consumption, and control management of the energy source. Therefore, this study proposes an advanced backtracking search optimization algorithm (BSA) equipped with teaching and learning‐based optimization (TLBO), named TLBOBSA, to accurately simulate the PV model. During the evaluation of the proposed algorithm, the concept of teaching from TLBO is introduced into the BSA to guide optimal individuals, thus improving the convergence rate of the algorithm. The learning behavior among individuals in the student phase of TLBO facilitates interindividual learning and provides beneficial information for its evolution, which is introduced into the BSA to ensure the diversity of the population. The comprehensive test results of different PV module models in different environmental conditions show that the proposed algorithm is more advantageous for parameter extraction than other existing algorithms. This can be seen in the simulation experiments of two commercial PV models, where the simulated current is consistent with the measured current at each measured voltage. This demonstrates that the proposed TLBOBSA is an accurate and reliable tool for evaluating unknown parameters of PV models. (1) An improved backtracking search algorithm with teaching and learning‐based optimization (TLBOBSA) is proposed to extract parameters of the photovoltaic system. (2) The performance of TLBOBSA is compared with some well‐known competitive algorithms. (3) TLBOBSA was evaluated under different irradiance levels and temperature levels. (4) TLBOBSA has improved the convergence speed and obtained optimal accuracy among all competitive algorithms.</description><subject>Algorithms</subject><subject>Design</subject><subject>Diodes</subject><subject>Efficiency</subject><subject>Electrical measurement</subject><subject>Energy sources</subject><subject>Environment models</subject><subject>Environmental conditions</subject><subject>Evaluation</subject><subject>Feature selection</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>metaheuristics</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>parameter extraction</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>photovoltaic models</subject><subject>Photovoltaics</subject><subject>Power consumption</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Simulation</subject><subject>solar cell</subject><subject>Solar energy</subject><subject>swarm intelligence</subject><subject>Traveling salesman problem</subject><issn>2050-0505</issn><issn>2050-0505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU9PGzEQxa0KpKKUQ7-BJU49BMZ_Nrs-UhRaJCQOwNmadWYTp5t1ajvQ8OlxslXVCweP7aefn2f0GPsq4FIAyCtKpC6FkuYTO5NQwbSs6uS_82d2ntIaAIQW2oA4Y_Q9hJRpwVt0v3IsxQ9LngijW_GwzX7j3zD7MPBXn1fcD12Im1GgP26Fw5J4kfh2FXJ4CX1G73jaF8sNpxfsd0f2CzvtsE90_nefsOfb-dPNz-n9w4-7m-v7qVOmMdNZVwsHbaMUOqdbFFWFCAROAWoAYxw0C10L0VAtsJmJtgzlpKGuVU4LoybsbvRdBFzbbfQbjHsb0NujEOLSYsze9WRJaqOVJqoWSstyaUGKunhSQ60sPUzYxei1jeH3jlK267CLQ2nfyno2Aw2yOVDfRsrFkFKk7t-vAuwhFHsIxR5CKezVyL76nvYfg3b-OFfHF-8OjI4t</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Weng, Xuemeng</creator><creator>Liu, Yun</creator><creator>Heidari, Ali Asghar</creator><creator>Cai, Zhennao</creator><creator>Lin, Haiping</creator><creator>Chen, Huiling</creator><creator>Liang, Guoxi</creator><creator>Alsufyani, Abdulmajeed</creator><creator>Bourouis, Sami</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7714-9693</orcidid></search><sort><creationdate>202301</creationdate><title>Boosted backtracking search optimization with information exchange for photovoltaic system evaluation</title><author>Weng, Xuemeng ; Liu, Yun ; Heidari, Ali Asghar ; Cai, Zhennao ; Lin, Haiping ; Chen, Huiling ; Liang, Guoxi ; Alsufyani, Abdulmajeed ; Bourouis, Sami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3989-6f71c0b833acc4ba155aa0e0c30a40099c08d47118e71a861b050c29efb3c4193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Design</topic><topic>Diodes</topic><topic>Efficiency</topic><topic>Electrical measurement</topic><topic>Energy sources</topic><topic>Environment models</topic><topic>Environmental conditions</topic><topic>Evaluation</topic><topic>Feature selection</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>metaheuristics</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>parameter extraction</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>photovoltaic models</topic><topic>Photovoltaics</topic><topic>Power consumption</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Simulation</topic><topic>solar cell</topic><topic>Solar energy</topic><topic>swarm intelligence</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Xuemeng</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Heidari, Ali Asghar</creatorcontrib><creatorcontrib>Cai, Zhennao</creatorcontrib><creatorcontrib>Lin, Haiping</creatorcontrib><creatorcontrib>Chen, Huiling</creatorcontrib><creatorcontrib>Liang, Guoxi</creatorcontrib><creatorcontrib>Alsufyani, Abdulmajeed</creatorcontrib><creatorcontrib>Bourouis, Sami</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energy science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Xuemeng</au><au>Liu, Yun</au><au>Heidari, Ali Asghar</au><au>Cai, Zhennao</au><au>Lin, Haiping</au><au>Chen, Huiling</au><au>Liang, Guoxi</au><au>Alsufyani, Abdulmajeed</au><au>Bourouis, Sami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosted backtracking search optimization with information exchange for photovoltaic system evaluation</atitle><jtitle>Energy science &amp; engineering</jtitle><date>2023-01</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><spage>267</spage><epage>298</epage><pages>267-298</pages><issn>2050-0505</issn><eissn>2050-0505</eissn><abstract>The determination of photovoltaic (PV) parameters is of great importance for the reliability of solar system operation, continuity of the load power consumption, and control management of the energy source. Therefore, this study proposes an advanced backtracking search optimization algorithm (BSA) equipped with teaching and learning‐based optimization (TLBO), named TLBOBSA, to accurately simulate the PV model. During the evaluation of the proposed algorithm, the concept of teaching from TLBO is introduced into the BSA to guide optimal individuals, thus improving the convergence rate of the algorithm. The learning behavior among individuals in the student phase of TLBO facilitates interindividual learning and provides beneficial information for its evolution, which is introduced into the BSA to ensure the diversity of the population. The comprehensive test results of different PV module models in different environmental conditions show that the proposed algorithm is more advantageous for parameter extraction than other existing algorithms. This can be seen in the simulation experiments of two commercial PV models, where the simulated current is consistent with the measured current at each measured voltage. This demonstrates that the proposed TLBOBSA is an accurate and reliable tool for evaluating unknown parameters of PV models. (1) An improved backtracking search algorithm with teaching and learning‐based optimization (TLBOBSA) is proposed to extract parameters of the photovoltaic system. (2) The performance of TLBOBSA is compared with some well‐known competitive algorithms. (3) TLBOBSA was evaluated under different irradiance levels and temperature levels. (4) TLBOBSA has improved the convergence speed and obtained optimal accuracy among all competitive algorithms.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ese3.1329</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-7714-9693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-0505
ispartof Energy science & engineering, 2023-01, Vol.11 (1), p.267-298
issn 2050-0505
2050-0505
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e249434ee5d342249b0217861e8eb2b8
source Publicly Available Content Database; Wiley Open Access
subjects Algorithms
Design
Diodes
Efficiency
Electrical measurement
Energy sources
Environment models
Environmental conditions
Evaluation
Feature selection
Genetic algorithms
Machine learning
metaheuristics
Neural networks
Optimization
Optimization algorithms
Parameter estimation
parameter extraction
Parameter identification
Parameters
Photovoltaic cells
photovoltaic models
Photovoltaics
Power consumption
R&D
Research & development
Simulation
solar cell
Solar energy
swarm intelligence
Traveling salesman problem
title Boosted backtracking search optimization with information exchange for photovoltaic system evaluation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosted%20backtracking%20search%20optimization%20with%20information%20exchange%20for%20photovoltaic%20system%20evaluation&rft.jtitle=Energy%20science%20&%20engineering&rft.au=Weng,%20Xuemeng&rft.date=2023-01&rft.volume=11&rft.issue=1&rft.spage=267&rft.epage=298&rft.pages=267-298&rft.issn=2050-0505&rft.eissn=2050-0505&rft_id=info:doi/10.1002/ese3.1329&rft_dat=%3Cproquest_doaj_%3E2766040288%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3989-6f71c0b833acc4ba155aa0e0c30a40099c08d47118e71a861b050c29efb3c4193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2766040288&rft_id=info:pmid/&rfr_iscdi=true