Loading…

Forced ILW-Burgers Equation as a Model for Rossby Solitary Waves Generated by Topography in Finite Depth Fluids

The paper presents an investigation of the generation, evolution of Rossby solitary waves generated by topography in finite depth fluids. The forced ILW- (Intermediate Long Waves-) Burgers equation as a model governing the amplitude of solitary waves is first derived and shown to reduce to the KdV-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Mathematics 2012-01, Vol.2012 (2012), p.987-1003-367
Main Authors: Wang, Qingbiao, Shi, Yunlong, Yin, Baoshu, Yang, Hongwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper presents an investigation of the generation, evolution of Rossby solitary waves generated by topography in finite depth fluids. The forced ILW- (Intermediate Long Waves-) Burgers equation as a model governing the amplitude of solitary waves is first derived and shown to reduce to the KdV- (Korteweg-de Vries-) Burgers equation in shallow fluids and BO- (Benjamin-Ono-) Burgers equation in deep fluids. By analysis and calculation, the perturbation solution and some conservation relations of the ILW-Burgers equation are obtained. Finally, with the help of pseudospectral method, the numerical solutions of the forced ILW-Burgers equation are given. The results demonstrate that the detuning parameter α holds important implications for the generation of the solitary waves. By comparing with the solitary waves governed by ILW-Burgers equation and BO-Burgers equation, we can conclude that the solitary waves generated by topography in finite depth fluids are different from that in deep fluids.
ISSN:1110-757X
1687-0042
DOI:10.1155/2012/491343