Loading…

Silica-Coated Magnetic Nanoparticles Decrease Human Bone Marrow-Derived Mesenchymal Stem Cell Migratory Activity by Reducing Membrane Fluidity and Impairing Focal Adhesion

For stem cell-based therapies, the fate and distribution of stem cells should be traced using non-invasive or histological methods and a nanomaterial-based labelling agent. However, evaluation of the biophysical effects and related biological functions of nanomaterials in stem cells remains challeng...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2019-10, Vol.9 (10), p.1475
Main Authors: Shin, Tae Hwan, Lee, Da Yeon, Ketebo, Abdurazak Aman, Lee, Seungah, Manavalan, Balachandran, Basith, Shaherin, Ahn, Chanyoung, Kang, Seong Ho, Park, Sungsu, Lee, Gwang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-af5fe2e76aacc2687d39079cf913b71d16e5d1b7c87e56c08af45c82532da033
cites cdi_FETCH-LOGICAL-c452t-af5fe2e76aacc2687d39079cf913b71d16e5d1b7c87e56c08af45c82532da033
container_end_page
container_issue 10
container_start_page 1475
container_title Nanomaterials (Basel, Switzerland)
container_volume 9
creator Shin, Tae Hwan
Lee, Da Yeon
Ketebo, Abdurazak Aman
Lee, Seungah
Manavalan, Balachandran
Basith, Shaherin
Ahn, Chanyoung
Kang, Seong Ho
Park, Sungsu
Lee, Gwang
description For stem cell-based therapies, the fate and distribution of stem cells should be traced using non-invasive or histological methods and a nanomaterial-based labelling agent. However, evaluation of the biophysical effects and related biological functions of nanomaterials in stem cells remains challenging. Here, we aimed to investigate the biophysical effects of nanomaterials on stem cells, including those on membrane fluidity, using total internal reflection fluorescence microscopy, and traction force, using micropillars of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) labelled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO2(RITC)). Furthermore, to evaluate the biological functions related to these biophysical changes, we assessed the cell viability, reactive oxygen species (ROS) generation, intracellular cytoskeleton, and the migratory activity of MNPs@SiO2(RITC)-treated hBM-MSCs. Compared to that in the control, cell viability decreased by 10% and intracellular ROS increased by 2-fold due to the induction of 20% higher peroxidized lipid in hBM-MSCs treated with 1.0 µg/µL MNPs@SiO2(RITC). Membrane fluidity was reduced by MNPs@SiO2(RITC)-induced lipid oxidation in a concentration-dependent manner. In addition, cell shrinkage with abnormal formation of focal adhesions and ~30% decreased total traction force were observed in cells treated with 1.0 µg/µL MNPs@SiO2(RITC) without specific interaction between MNPs@SiO2(RITC) and cytoskeletal proteins. Furthermore, the migratory activity of hBM-MSCs, which was highly related to membrane fluidity and cytoskeletal abnormality, decreased significantly after MNPs@SiO2(RITC) treatment. These observations indicated that the migratory activity of hBM-MSCs was impaired by MNPs@SiO2(RITC) treatment due to changes in stem-cell biophysical properties and related biological functions, highlighting the important mechanisms via which nanoparticles impair migration of hBM-MSCs. Our findings indicate that nanoparticles used for stem cell trafficking or clinical applications should be labelled using optimal nanoparticle concentrations to preserve hBM-MSC migratory activity and ensure successful outcomes following stem cell localisation.
doi_str_mv 10.3390/nano9101475
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2a78290f15a474b8f9283a9e30dcf5a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e2a78290f15a474b8f9283a9e30dcf5a</doaj_id><sourcerecordid>2307127026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-af5fe2e76aacc2687d39079cf913b71d16e5d1b7c87e56c08af45c82532da033</originalsourceid><addsrcrecordid>eNpdkt1uEzEQhVcIRKvSK17AEjdIKOCf9dp7g1RSQiO1INHeW7Pe2cTRrh3s3VR5Jl4Sh0SoxTce-Zz5ND6aonjL6EchavrJgw81o6xU8kVxzqmqZ2Vds5dP6rPiMqUNzadmQkvxujgTrOJKKHle_L53vbMwmwcYsSV3sPI4Oku-Z-4WYi57TOQabURISG6mATz5Ejxma4zhcXaN0e0OnZjQ2_V-gJ7cjziQOfY9uXOrCGOIe3JlR7dz4540e_IT28k6v8pNQxMhwxb95NqDCr4ly2ELLh70RbAZd9WuMbng3xSvOugTXp7ui-Jh8fVhfjO7_fFtOb-6ndlS8nEGneyQo6oArOWVVm0OStW2y99vFGtZhbJljbJaoaws1dCV0mouBW-BCnFRLI_YNsDGbKMbIO5NAGf-PoS4MqdgDHJQmte0YxJKVTa6q7kWUKOgre0kZNbnI2s7NQO2Fv0YoX8Gfa54tzarsDOVFrLWOgPenwAx_JowjWZwyeZoc2phSoYLqhhXlFfZ-u4_6yZM0eekDJelrivFNc2uD0eXjSGliN2_YRg1h5UyT1ZK_AHNDcBb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548967280</pqid></control><display><type>article</type><title>Silica-Coated Magnetic Nanoparticles Decrease Human Bone Marrow-Derived Mesenchymal Stem Cell Migratory Activity by Reducing Membrane Fluidity and Impairing Focal Adhesion</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Shin, Tae Hwan ; Lee, Da Yeon ; Ketebo, Abdurazak Aman ; Lee, Seungah ; Manavalan, Balachandran ; Basith, Shaherin ; Ahn, Chanyoung ; Kang, Seong Ho ; Park, Sungsu ; Lee, Gwang</creator><creatorcontrib>Shin, Tae Hwan ; Lee, Da Yeon ; Ketebo, Abdurazak Aman ; Lee, Seungah ; Manavalan, Balachandran ; Basith, Shaherin ; Ahn, Chanyoung ; Kang, Seong Ho ; Park, Sungsu ; Lee, Gwang</creatorcontrib><description>For stem cell-based therapies, the fate and distribution of stem cells should be traced using non-invasive or histological methods and a nanomaterial-based labelling agent. However, evaluation of the biophysical effects and related biological functions of nanomaterials in stem cells remains challenging. Here, we aimed to investigate the biophysical effects of nanomaterials on stem cells, including those on membrane fluidity, using total internal reflection fluorescence microscopy, and traction force, using micropillars of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) labelled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO2(RITC)). Furthermore, to evaluate the biological functions related to these biophysical changes, we assessed the cell viability, reactive oxygen species (ROS) generation, intracellular cytoskeleton, and the migratory activity of MNPs@SiO2(RITC)-treated hBM-MSCs. Compared to that in the control, cell viability decreased by 10% and intracellular ROS increased by 2-fold due to the induction of 20% higher peroxidized lipid in hBM-MSCs treated with 1.0 µg/µL MNPs@SiO2(RITC). Membrane fluidity was reduced by MNPs@SiO2(RITC)-induced lipid oxidation in a concentration-dependent manner. In addition, cell shrinkage with abnormal formation of focal adhesions and ~30% decreased total traction force were observed in cells treated with 1.0 µg/µL MNPs@SiO2(RITC) without specific interaction between MNPs@SiO2(RITC) and cytoskeletal proteins. Furthermore, the migratory activity of hBM-MSCs, which was highly related to membrane fluidity and cytoskeletal abnormality, decreased significantly after MNPs@SiO2(RITC) treatment. These observations indicated that the migratory activity of hBM-MSCs was impaired by MNPs@SiO2(RITC) treatment due to changes in stem-cell biophysical properties and related biological functions, highlighting the important mechanisms via which nanoparticles impair migration of hBM-MSCs. Our findings indicate that nanoparticles used for stem cell trafficking or clinical applications should be labelled using optimal nanoparticle concentrations to preserve hBM-MSC migratory activity and ensure successful outcomes following stem cell localisation.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano9101475</identifier><identifier>PMID: 31627375</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biological effects ; Biological properties ; Bone marrow ; Cell migration ; Cell viability ; cytoskeletal abnormality ; Cytoskeleton ; Cytotoxicity ; Evaluation ; Fluidity ; Fluorescence ; Fluorescence microscopy ; focal adhesion ; Gene expression ; human bone marrow-derived mesenchymal stem cells ; Intracellular ; Isothiocyanate ; Labeling ; Lipid peroxidation ; Lipids ; magnetic nanoparticles ; Magnetic resonance imaging ; Membrane fluidity ; Membranes ; Mesenchymal stem cells ; Microscopy ; Morphology ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Oxidation ; Oxidative stress ; Physiology ; Reactive oxygen species ; Rhodamine ; Silica ; Silicon dioxide ; Stem cells ; Traction ; Traction force ; Viscosity</subject><ispartof>Nanomaterials (Basel, Switzerland), 2019-10, Vol.9 (10), p.1475</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-af5fe2e76aacc2687d39079cf913b71d16e5d1b7c87e56c08af45c82532da033</citedby><cites>FETCH-LOGICAL-c452t-af5fe2e76aacc2687d39079cf913b71d16e5d1b7c87e56c08af45c82532da033</cites><orcidid>0000-0003-2101-4113 ; 0000-0003-3062-1302 ; 0000-0001-9686-4556 ; 0000-0001-7237-7163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548967280/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548967280?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Shin, Tae Hwan</creatorcontrib><creatorcontrib>Lee, Da Yeon</creatorcontrib><creatorcontrib>Ketebo, Abdurazak Aman</creatorcontrib><creatorcontrib>Lee, Seungah</creatorcontrib><creatorcontrib>Manavalan, Balachandran</creatorcontrib><creatorcontrib>Basith, Shaherin</creatorcontrib><creatorcontrib>Ahn, Chanyoung</creatorcontrib><creatorcontrib>Kang, Seong Ho</creatorcontrib><creatorcontrib>Park, Sungsu</creatorcontrib><creatorcontrib>Lee, Gwang</creatorcontrib><title>Silica-Coated Magnetic Nanoparticles Decrease Human Bone Marrow-Derived Mesenchymal Stem Cell Migratory Activity by Reducing Membrane Fluidity and Impairing Focal Adhesion</title><title>Nanomaterials (Basel, Switzerland)</title><description>For stem cell-based therapies, the fate and distribution of stem cells should be traced using non-invasive or histological methods and a nanomaterial-based labelling agent. However, evaluation of the biophysical effects and related biological functions of nanomaterials in stem cells remains challenging. Here, we aimed to investigate the biophysical effects of nanomaterials on stem cells, including those on membrane fluidity, using total internal reflection fluorescence microscopy, and traction force, using micropillars of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) labelled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO2(RITC)). Furthermore, to evaluate the biological functions related to these biophysical changes, we assessed the cell viability, reactive oxygen species (ROS) generation, intracellular cytoskeleton, and the migratory activity of MNPs@SiO2(RITC)-treated hBM-MSCs. Compared to that in the control, cell viability decreased by 10% and intracellular ROS increased by 2-fold due to the induction of 20% higher peroxidized lipid in hBM-MSCs treated with 1.0 µg/µL MNPs@SiO2(RITC). Membrane fluidity was reduced by MNPs@SiO2(RITC)-induced lipid oxidation in a concentration-dependent manner. In addition, cell shrinkage with abnormal formation of focal adhesions and ~30% decreased total traction force were observed in cells treated with 1.0 µg/µL MNPs@SiO2(RITC) without specific interaction between MNPs@SiO2(RITC) and cytoskeletal proteins. Furthermore, the migratory activity of hBM-MSCs, which was highly related to membrane fluidity and cytoskeletal abnormality, decreased significantly after MNPs@SiO2(RITC) treatment. These observations indicated that the migratory activity of hBM-MSCs was impaired by MNPs@SiO2(RITC) treatment due to changes in stem-cell biophysical properties and related biological functions, highlighting the important mechanisms via which nanoparticles impair migration of hBM-MSCs. Our findings indicate that nanoparticles used for stem cell trafficking or clinical applications should be labelled using optimal nanoparticle concentrations to preserve hBM-MSC migratory activity and ensure successful outcomes following stem cell localisation.</description><subject>Biological effects</subject><subject>Biological properties</subject><subject>Bone marrow</subject><subject>Cell migration</subject><subject>Cell viability</subject><subject>cytoskeletal abnormality</subject><subject>Cytoskeleton</subject><subject>Cytotoxicity</subject><subject>Evaluation</subject><subject>Fluidity</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>focal adhesion</subject><subject>Gene expression</subject><subject>human bone marrow-derived mesenchymal stem cells</subject><subject>Intracellular</subject><subject>Isothiocyanate</subject><subject>Labeling</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>magnetic nanoparticles</subject><subject>Magnetic resonance imaging</subject><subject>Membrane fluidity</subject><subject>Membranes</subject><subject>Mesenchymal stem cells</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Physiology</subject><subject>Reactive oxygen species</subject><subject>Rhodamine</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Stem cells</subject><subject>Traction</subject><subject>Traction force</subject><subject>Viscosity</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt1uEzEQhVcIRKvSK17AEjdIKOCf9dp7g1RSQiO1INHeW7Pe2cTRrh3s3VR5Jl4Sh0SoxTce-Zz5ND6aonjL6EchavrJgw81o6xU8kVxzqmqZ2Vds5dP6rPiMqUNzadmQkvxujgTrOJKKHle_L53vbMwmwcYsSV3sPI4Oku-Z-4WYi57TOQabURISG6mATz5Ejxma4zhcXaN0e0OnZjQ2_V-gJ7cjziQOfY9uXOrCGOIe3JlR7dz4540e_IT28k6v8pNQxMhwxb95NqDCr4ly2ELLh70RbAZd9WuMbng3xSvOugTXp7ui-Jh8fVhfjO7_fFtOb-6ndlS8nEGneyQo6oArOWVVm0OStW2y99vFGtZhbJljbJaoaws1dCV0mouBW-BCnFRLI_YNsDGbKMbIO5NAGf-PoS4MqdgDHJQmte0YxJKVTa6q7kWUKOgre0kZNbnI2s7NQO2Fv0YoX8Gfa54tzarsDOVFrLWOgPenwAx_JowjWZwyeZoc2phSoYLqhhXlFfZ-u4_6yZM0eekDJelrivFNc2uD0eXjSGliN2_YRg1h5UyT1ZK_AHNDcBb</recordid><startdate>20191017</startdate><enddate>20191017</enddate><creator>Shin, Tae Hwan</creator><creator>Lee, Da Yeon</creator><creator>Ketebo, Abdurazak Aman</creator><creator>Lee, Seungah</creator><creator>Manavalan, Balachandran</creator><creator>Basith, Shaherin</creator><creator>Ahn, Chanyoung</creator><creator>Kang, Seong Ho</creator><creator>Park, Sungsu</creator><creator>Lee, Gwang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2101-4113</orcidid><orcidid>https://orcid.org/0000-0003-3062-1302</orcidid><orcidid>https://orcid.org/0000-0001-9686-4556</orcidid><orcidid>https://orcid.org/0000-0001-7237-7163</orcidid></search><sort><creationdate>20191017</creationdate><title>Silica-Coated Magnetic Nanoparticles Decrease Human Bone Marrow-Derived Mesenchymal Stem Cell Migratory Activity by Reducing Membrane Fluidity and Impairing Focal Adhesion</title><author>Shin, Tae Hwan ; Lee, Da Yeon ; Ketebo, Abdurazak Aman ; Lee, Seungah ; Manavalan, Balachandran ; Basith, Shaherin ; Ahn, Chanyoung ; Kang, Seong Ho ; Park, Sungsu ; Lee, Gwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-af5fe2e76aacc2687d39079cf913b71d16e5d1b7c87e56c08af45c82532da033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological effects</topic><topic>Biological properties</topic><topic>Bone marrow</topic><topic>Cell migration</topic><topic>Cell viability</topic><topic>cytoskeletal abnormality</topic><topic>Cytoskeleton</topic><topic>Cytotoxicity</topic><topic>Evaluation</topic><topic>Fluidity</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>focal adhesion</topic><topic>Gene expression</topic><topic>human bone marrow-derived mesenchymal stem cells</topic><topic>Intracellular</topic><topic>Isothiocyanate</topic><topic>Labeling</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>magnetic nanoparticles</topic><topic>Magnetic resonance imaging</topic><topic>Membrane fluidity</topic><topic>Membranes</topic><topic>Mesenchymal stem cells</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Physiology</topic><topic>Reactive oxygen species</topic><topic>Rhodamine</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Stem cells</topic><topic>Traction</topic><topic>Traction force</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Tae Hwan</creatorcontrib><creatorcontrib>Lee, Da Yeon</creatorcontrib><creatorcontrib>Ketebo, Abdurazak Aman</creatorcontrib><creatorcontrib>Lee, Seungah</creatorcontrib><creatorcontrib>Manavalan, Balachandran</creatorcontrib><creatorcontrib>Basith, Shaherin</creatorcontrib><creatorcontrib>Ahn, Chanyoung</creatorcontrib><creatorcontrib>Kang, Seong Ho</creatorcontrib><creatorcontrib>Park, Sungsu</creatorcontrib><creatorcontrib>Lee, Gwang</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Tae Hwan</au><au>Lee, Da Yeon</au><au>Ketebo, Abdurazak Aman</au><au>Lee, Seungah</au><au>Manavalan, Balachandran</au><au>Basith, Shaherin</au><au>Ahn, Chanyoung</au><au>Kang, Seong Ho</au><au>Park, Sungsu</au><au>Lee, Gwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica-Coated Magnetic Nanoparticles Decrease Human Bone Marrow-Derived Mesenchymal Stem Cell Migratory Activity by Reducing Membrane Fluidity and Impairing Focal Adhesion</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2019-10-17</date><risdate>2019</risdate><volume>9</volume><issue>10</issue><spage>1475</spage><pages>1475-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>For stem cell-based therapies, the fate and distribution of stem cells should be traced using non-invasive or histological methods and a nanomaterial-based labelling agent. However, evaluation of the biophysical effects and related biological functions of nanomaterials in stem cells remains challenging. Here, we aimed to investigate the biophysical effects of nanomaterials on stem cells, including those on membrane fluidity, using total internal reflection fluorescence microscopy, and traction force, using micropillars of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) labelled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO2(RITC)). Furthermore, to evaluate the biological functions related to these biophysical changes, we assessed the cell viability, reactive oxygen species (ROS) generation, intracellular cytoskeleton, and the migratory activity of MNPs@SiO2(RITC)-treated hBM-MSCs. Compared to that in the control, cell viability decreased by 10% and intracellular ROS increased by 2-fold due to the induction of 20% higher peroxidized lipid in hBM-MSCs treated with 1.0 µg/µL MNPs@SiO2(RITC). Membrane fluidity was reduced by MNPs@SiO2(RITC)-induced lipid oxidation in a concentration-dependent manner. In addition, cell shrinkage with abnormal formation of focal adhesions and ~30% decreased total traction force were observed in cells treated with 1.0 µg/µL MNPs@SiO2(RITC) without specific interaction between MNPs@SiO2(RITC) and cytoskeletal proteins. Furthermore, the migratory activity of hBM-MSCs, which was highly related to membrane fluidity and cytoskeletal abnormality, decreased significantly after MNPs@SiO2(RITC) treatment. These observations indicated that the migratory activity of hBM-MSCs was impaired by MNPs@SiO2(RITC) treatment due to changes in stem-cell biophysical properties and related biological functions, highlighting the important mechanisms via which nanoparticles impair migration of hBM-MSCs. Our findings indicate that nanoparticles used for stem cell trafficking or clinical applications should be labelled using optimal nanoparticle concentrations to preserve hBM-MSC migratory activity and ensure successful outcomes following stem cell localisation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>31627375</pmid><doi>10.3390/nano9101475</doi><orcidid>https://orcid.org/0000-0003-2101-4113</orcidid><orcidid>https://orcid.org/0000-0003-3062-1302</orcidid><orcidid>https://orcid.org/0000-0001-9686-4556</orcidid><orcidid>https://orcid.org/0000-0001-7237-7163</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2019-10, Vol.9 (10), p.1475
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e2a78290f15a474b8f9283a9e30dcf5a
source Open Access: PubMed Central; Publicly Available Content Database
subjects Biological effects
Biological properties
Bone marrow
Cell migration
Cell viability
cytoskeletal abnormality
Cytoskeleton
Cytotoxicity
Evaluation
Fluidity
Fluorescence
Fluorescence microscopy
focal adhesion
Gene expression
human bone marrow-derived mesenchymal stem cells
Intracellular
Isothiocyanate
Labeling
Lipid peroxidation
Lipids
magnetic nanoparticles
Magnetic resonance imaging
Membrane fluidity
Membranes
Mesenchymal stem cells
Microscopy
Morphology
Nanomaterials
Nanoparticles
Nanotechnology
Oxidation
Oxidative stress
Physiology
Reactive oxygen species
Rhodamine
Silica
Silicon dioxide
Stem cells
Traction
Traction force
Viscosity
title Silica-Coated Magnetic Nanoparticles Decrease Human Bone Marrow-Derived Mesenchymal Stem Cell Migratory Activity by Reducing Membrane Fluidity and Impairing Focal Adhesion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica-Coated%20Magnetic%20Nanoparticles%20Decrease%20Human%20Bone%20Marrow-Derived%20Mesenchymal%20Stem%20Cell%20Migratory%20Activity%20by%20Reducing%20Membrane%20Fluidity%20and%20Impairing%20Focal%20Adhesion&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Shin,%20Tae%20Hwan&rft.date=2019-10-17&rft.volume=9&rft.issue=10&rft.spage=1475&rft.pages=1475-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano9101475&rft_dat=%3Cproquest_doaj_%3E2307127026%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-af5fe2e76aacc2687d39079cf913b71d16e5d1b7c87e56c08af45c82532da033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548967280&rft_id=info:pmid/31627375&rfr_iscdi=true