Loading…

Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions

The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to m...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric measurement techniques 2020-04, Vol.13 (4), p.2015-2033
Main Authors: Niedermeier, Dennis, Voigtländer, Jens, Schmalfuß, Silvio, Busch, Daniel, Schumacher, Jörg, Shaw, Raymond A., Stratmann, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3
cites cdi_FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3
container_end_page 2033
container_issue 4
container_start_page 2015
container_title Atmospheric measurement techniques
container_volume 13
creator Niedermeier, Dennis
Voigtländer, Jens
Schmalfuß, Silvio
Busch, Daniel
Schumacher, Jörg
Shaw, Raymond A.
Stratmann, Frank
description The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C>T>-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.
doi_str_mv 10.5194/amt-13-2015-2020
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2a98f71f02c452886146990591cc9f4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e2a98f71f02c452886146990591cc9f4</doaj_id><sourcerecordid>2414450145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3</originalsourceid><addsrcrecordid>eNpNkc-KFDEQxoMouI7ePQY8t6bypzvtbRl0HRjw4HoONdWJZujprEkaWb34Dr6hT2LGEfFSVRQf36-oj7HnIF4aGPUrPNUOVCcFmFakeMCuwPZDZ422D_-bH7MnpRyF6DUM8op9337GjFR9jt-wxrRwXCYeYi6VZ1_WuRYecjrx_fV296G7fc2Rn1IstcOY-dfYxHVdFj_zmnip63TP0edU0vzrx0-a0zq1Xtd8WGe_kOdxaajGa6TylD0KOBf_7G_fsI9v39xu33X79ze77fW-IzWMtaNJDt5MQXutlR-DoQPiREigAIzVoScg5YUW4YCyR0UWabBBq2Eikl5t2O7iOyU8urscT5jvXcLo_ixS_uQw10izd17iaMMAQUjSRlrbg-7HUZgRiMZmuWEvLl53OX1ZfanumNa8tPOd1KC1EaBNU4mLitorSvbhHxWEO8flWlwOlDvH5c5xqd8aAozY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414450145</pqid></control><display><type>article</type><title>Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Niedermeier, Dennis ; Voigtländer, Jens ; Schmalfuß, Silvio ; Busch, Daniel ; Schumacher, Jörg ; Shaw, Raymond A. ; Stratmann, Frank</creator><creatorcontrib>Niedermeier, Dennis ; Voigtländer, Jens ; Schmalfuß, Silvio ; Busch, Daniel ; Schumacher, Jörg ; Shaw, Raymond A. ; Stratmann, Frank</creatorcontrib><description>The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C&gt;T&gt;-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.</description><identifier>ISSN: 1867-8548</identifier><identifier>ISSN: 1867-1381</identifier><identifier>EISSN: 1867-8548</identifier><identifier>DOI: 10.5194/amt-13-2015-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerodynamics ; Aerosol clouds ; Aerosol-cloud interactions ; Aerosols ; Boundary conditions ; Cloud interaction ; Cloud microphysics ; Clouds ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Continuous flow ; Flow velocity ; Fluid dynamics ; Fluid flow ; Humidity ; Hydrodynamics ; Hygroscopicity ; Influence ; Laboratories ; Mathematical models ; Numerical models ; Numerical simulations ; Precipitation ; Reproducibility ; Simulation ; Simulators ; Temperature range ; Turbulence ; Wind tunnels</subject><ispartof>Atmospheric measurement techniques, 2020-04, Vol.13 (4), p.2015-2033</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3</citedby><cites>FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3</cites><orcidid>0000-0002-8265-6235 ; 0000-0002-1359-4536 ; 0000-0003-2347-0956 ; 0000-0003-0390-2424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414450145/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414450145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Niedermeier, Dennis</creatorcontrib><creatorcontrib>Voigtländer, Jens</creatorcontrib><creatorcontrib>Schmalfuß, Silvio</creatorcontrib><creatorcontrib>Busch, Daniel</creatorcontrib><creatorcontrib>Schumacher, Jörg</creatorcontrib><creatorcontrib>Shaw, Raymond A.</creatorcontrib><creatorcontrib>Stratmann, Frank</creatorcontrib><title>Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions</title><title>Atmospheric measurement techniques</title><description>The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C&gt;T&gt;-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.</description><subject>Aerodynamics</subject><subject>Aerosol clouds</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>Boundary conditions</subject><subject>Cloud interaction</subject><subject>Cloud microphysics</subject><subject>Clouds</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Continuous flow</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Humidity</subject><subject>Hydrodynamics</subject><subject>Hygroscopicity</subject><subject>Influence</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Numerical simulations</subject><subject>Precipitation</subject><subject>Reproducibility</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Temperature range</subject><subject>Turbulence</subject><subject>Wind tunnels</subject><issn>1867-8548</issn><issn>1867-1381</issn><issn>1867-8548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc-KFDEQxoMouI7ePQY8t6bypzvtbRl0HRjw4HoONdWJZujprEkaWb34Dr6hT2LGEfFSVRQf36-oj7HnIF4aGPUrPNUOVCcFmFakeMCuwPZDZ422D_-bH7MnpRyF6DUM8op9337GjFR9jt-wxrRwXCYeYi6VZ1_WuRYecjrx_fV296G7fc2Rn1IstcOY-dfYxHVdFj_zmnip63TP0edU0vzrx0-a0zq1Xtd8WGe_kOdxaajGa6TylD0KOBf_7G_fsI9v39xu33X79ze77fW-IzWMtaNJDt5MQXutlR-DoQPiREigAIzVoScg5YUW4YCyR0UWabBBq2Eikl5t2O7iOyU8urscT5jvXcLo_ixS_uQw10izd17iaMMAQUjSRlrbg-7HUZgRiMZmuWEvLl53OX1ZfanumNa8tPOd1KC1EaBNU4mLitorSvbhHxWEO8flWlwOlDvH5c5xqd8aAozY</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Niedermeier, Dennis</creator><creator>Voigtländer, Jens</creator><creator>Schmalfuß, Silvio</creator><creator>Busch, Daniel</creator><creator>Schumacher, Jörg</creator><creator>Shaw, Raymond A.</creator><creator>Stratmann, Frank</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8265-6235</orcidid><orcidid>https://orcid.org/0000-0002-1359-4536</orcidid><orcidid>https://orcid.org/0000-0003-2347-0956</orcidid><orcidid>https://orcid.org/0000-0003-0390-2424</orcidid></search><sort><creationdate>20200421</creationdate><title>Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions</title><author>Niedermeier, Dennis ; Voigtländer, Jens ; Schmalfuß, Silvio ; Busch, Daniel ; Schumacher, Jörg ; Shaw, Raymond A. ; Stratmann, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aerosol clouds</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>Boundary conditions</topic><topic>Cloud interaction</topic><topic>Cloud microphysics</topic><topic>Clouds</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Continuous flow</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Humidity</topic><topic>Hydrodynamics</topic><topic>Hygroscopicity</topic><topic>Influence</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Numerical simulations</topic><topic>Precipitation</topic><topic>Reproducibility</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Temperature range</topic><topic>Turbulence</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niedermeier, Dennis</creatorcontrib><creatorcontrib>Voigtländer, Jens</creatorcontrib><creatorcontrib>Schmalfuß, Silvio</creatorcontrib><creatorcontrib>Busch, Daniel</creatorcontrib><creatorcontrib>Schumacher, Jörg</creatorcontrib><creatorcontrib>Shaw, Raymond A.</creatorcontrib><creatorcontrib>Stratmann, Frank</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niedermeier, Dennis</au><au>Voigtländer, Jens</au><au>Schmalfuß, Silvio</au><au>Busch, Daniel</au><au>Schumacher, Jörg</au><au>Shaw, Raymond A.</au><au>Stratmann, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions</atitle><jtitle>Atmospheric measurement techniques</jtitle><date>2020-04-21</date><risdate>2020</risdate><volume>13</volume><issue>4</issue><spage>2015</spage><epage>2033</epage><pages>2015-2033</pages><issn>1867-8548</issn><issn>1867-1381</issn><eissn>1867-8548</eissn><abstract>The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C&gt;T&gt;-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/amt-13-2015-2020</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8265-6235</orcidid><orcidid>https://orcid.org/0000-0002-1359-4536</orcidid><orcidid>https://orcid.org/0000-0003-2347-0956</orcidid><orcidid>https://orcid.org/0000-0003-0390-2424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-8548
ispartof Atmospheric measurement techniques, 2020-04, Vol.13 (4), p.2015-2033
issn 1867-8548
1867-1381
1867-8548
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e2a98f71f02c452886146990591cc9f4
source Publicly Available Content Database; DOAJ Directory of Open Access Journals
subjects Aerodynamics
Aerosol clouds
Aerosol-cloud interactions
Aerosols
Boundary conditions
Cloud interaction
Cloud microphysics
Clouds
Computational fluid dynamics
Computer applications
Computer simulation
Continuous flow
Flow velocity
Fluid dynamics
Fluid flow
Humidity
Hydrodynamics
Hygroscopicity
Influence
Laboratories
Mathematical models
Numerical models
Numerical simulations
Precipitation
Reproducibility
Simulation
Simulators
Temperature range
Turbulence
Wind tunnels
title Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20first%20results%20from%20LACIS-T:%20a%20moist-air%20wind%20tunnel%20to%20study%20aerosol%E2%80%93cloud%E2%80%93turbulence%20interactions&rft.jtitle=Atmospheric%20measurement%20techniques&rft.au=Niedermeier,%20Dennis&rft.date=2020-04-21&rft.volume=13&rft.issue=4&rft.spage=2015&rft.epage=2033&rft.pages=2015-2033&rft.issn=1867-8548&rft.eissn=1867-8548&rft_id=info:doi/10.5194/amt-13-2015-2020&rft_dat=%3Cproquest_doaj_%3E2414450145%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414450145&rft_id=info:pmid/&rfr_iscdi=true