Loading…
Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions
The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to m...
Saved in:
Published in: | Atmospheric measurement techniques 2020-04, Vol.13 (4), p.2015-2033 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3 |
container_end_page | 2033 |
container_issue | 4 |
container_start_page | 2015 |
container_title | Atmospheric measurement techniques |
container_volume | 13 |
creator | Niedermeier, Dennis Voigtländer, Jens Schmalfuß, Silvio Busch, Daniel Schumacher, Jörg Shaw, Raymond A. Stratmann, Frank |
description | The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C>T>-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes. |
doi_str_mv | 10.5194/amt-13-2015-2020 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2a98f71f02c452886146990591cc9f4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e2a98f71f02c452886146990591cc9f4</doaj_id><sourcerecordid>2414450145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3</originalsourceid><addsrcrecordid>eNpNkc-KFDEQxoMouI7ePQY8t6bypzvtbRl0HRjw4HoONdWJZujprEkaWb34Dr6hT2LGEfFSVRQf36-oj7HnIF4aGPUrPNUOVCcFmFakeMCuwPZDZ422D_-bH7MnpRyF6DUM8op9337GjFR9jt-wxrRwXCYeYi6VZ1_WuRYecjrx_fV296G7fc2Rn1IstcOY-dfYxHVdFj_zmnip63TP0edU0vzrx0-a0zq1Xtd8WGe_kOdxaajGa6TylD0KOBf_7G_fsI9v39xu33X79ze77fW-IzWMtaNJDt5MQXutlR-DoQPiREigAIzVoScg5YUW4YCyR0UWabBBq2Eikl5t2O7iOyU8urscT5jvXcLo_ixS_uQw10izd17iaMMAQUjSRlrbg-7HUZgRiMZmuWEvLl53OX1ZfanumNa8tPOd1KC1EaBNU4mLitorSvbhHxWEO8flWlwOlDvH5c5xqd8aAozY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414450145</pqid></control><display><type>article</type><title>Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Niedermeier, Dennis ; Voigtländer, Jens ; Schmalfuß, Silvio ; Busch, Daniel ; Schumacher, Jörg ; Shaw, Raymond A. ; Stratmann, Frank</creator><creatorcontrib>Niedermeier, Dennis ; Voigtländer, Jens ; Schmalfuß, Silvio ; Busch, Daniel ; Schumacher, Jörg ; Shaw, Raymond A. ; Stratmann, Frank</creatorcontrib><description>The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C>T>-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.</description><identifier>ISSN: 1867-8548</identifier><identifier>ISSN: 1867-1381</identifier><identifier>EISSN: 1867-8548</identifier><identifier>DOI: 10.5194/amt-13-2015-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerodynamics ; Aerosol clouds ; Aerosol-cloud interactions ; Aerosols ; Boundary conditions ; Cloud interaction ; Cloud microphysics ; Clouds ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Continuous flow ; Flow velocity ; Fluid dynamics ; Fluid flow ; Humidity ; Hydrodynamics ; Hygroscopicity ; Influence ; Laboratories ; Mathematical models ; Numerical models ; Numerical simulations ; Precipitation ; Reproducibility ; Simulation ; Simulators ; Temperature range ; Turbulence ; Wind tunnels</subject><ispartof>Atmospheric measurement techniques, 2020-04, Vol.13 (4), p.2015-2033</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3</citedby><cites>FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3</cites><orcidid>0000-0002-8265-6235 ; 0000-0002-1359-4536 ; 0000-0003-2347-0956 ; 0000-0003-0390-2424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414450145/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414450145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Niedermeier, Dennis</creatorcontrib><creatorcontrib>Voigtländer, Jens</creatorcontrib><creatorcontrib>Schmalfuß, Silvio</creatorcontrib><creatorcontrib>Busch, Daniel</creatorcontrib><creatorcontrib>Schumacher, Jörg</creatorcontrib><creatorcontrib>Shaw, Raymond A.</creatorcontrib><creatorcontrib>Stratmann, Frank</creatorcontrib><title>Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions</title><title>Atmospheric measurement techniques</title><description>The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C>T>-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.</description><subject>Aerodynamics</subject><subject>Aerosol clouds</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>Boundary conditions</subject><subject>Cloud interaction</subject><subject>Cloud microphysics</subject><subject>Clouds</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Continuous flow</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Humidity</subject><subject>Hydrodynamics</subject><subject>Hygroscopicity</subject><subject>Influence</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Numerical simulations</subject><subject>Precipitation</subject><subject>Reproducibility</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Temperature range</subject><subject>Turbulence</subject><subject>Wind tunnels</subject><issn>1867-8548</issn><issn>1867-1381</issn><issn>1867-8548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc-KFDEQxoMouI7ePQY8t6bypzvtbRl0HRjw4HoONdWJZujprEkaWb34Dr6hT2LGEfFSVRQf36-oj7HnIF4aGPUrPNUOVCcFmFakeMCuwPZDZ422D_-bH7MnpRyF6DUM8op9337GjFR9jt-wxrRwXCYeYi6VZ1_WuRYecjrx_fV296G7fc2Rn1IstcOY-dfYxHVdFj_zmnip63TP0edU0vzrx0-a0zq1Xtd8WGe_kOdxaajGa6TylD0KOBf_7G_fsI9v39xu33X79ze77fW-IzWMtaNJDt5MQXutlR-DoQPiREigAIzVoScg5YUW4YCyR0UWabBBq2Eikl5t2O7iOyU8urscT5jvXcLo_ixS_uQw10izd17iaMMAQUjSRlrbg-7HUZgRiMZmuWEvLl53OX1ZfanumNa8tPOd1KC1EaBNU4mLitorSvbhHxWEO8flWlwOlDvH5c5xqd8aAozY</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Niedermeier, Dennis</creator><creator>Voigtländer, Jens</creator><creator>Schmalfuß, Silvio</creator><creator>Busch, Daniel</creator><creator>Schumacher, Jörg</creator><creator>Shaw, Raymond A.</creator><creator>Stratmann, Frank</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8265-6235</orcidid><orcidid>https://orcid.org/0000-0002-1359-4536</orcidid><orcidid>https://orcid.org/0000-0003-2347-0956</orcidid><orcidid>https://orcid.org/0000-0003-0390-2424</orcidid></search><sort><creationdate>20200421</creationdate><title>Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions</title><author>Niedermeier, Dennis ; Voigtländer, Jens ; Schmalfuß, Silvio ; Busch, Daniel ; Schumacher, Jörg ; Shaw, Raymond A. ; Stratmann, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aerosol clouds</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>Boundary conditions</topic><topic>Cloud interaction</topic><topic>Cloud microphysics</topic><topic>Clouds</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Continuous flow</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Humidity</topic><topic>Hydrodynamics</topic><topic>Hygroscopicity</topic><topic>Influence</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Numerical simulations</topic><topic>Precipitation</topic><topic>Reproducibility</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Temperature range</topic><topic>Turbulence</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niedermeier, Dennis</creatorcontrib><creatorcontrib>Voigtländer, Jens</creatorcontrib><creatorcontrib>Schmalfuß, Silvio</creatorcontrib><creatorcontrib>Busch, Daniel</creatorcontrib><creatorcontrib>Schumacher, Jörg</creatorcontrib><creatorcontrib>Shaw, Raymond A.</creatorcontrib><creatorcontrib>Stratmann, Frank</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niedermeier, Dennis</au><au>Voigtländer, Jens</au><au>Schmalfuß, Silvio</au><au>Busch, Daniel</au><au>Schumacher, Jörg</au><au>Shaw, Raymond A.</au><au>Stratmann, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions</atitle><jtitle>Atmospheric measurement techniques</jtitle><date>2020-04-21</date><risdate>2020</risdate><volume>13</volume><issue>4</issue><spage>2015</spage><epage>2033</epage><pages>2015-2033</pages><issn>1867-8548</issn><issn>1867-1381</issn><eissn>1867-8548</eissn><abstract>The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C>T>-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/amt-13-2015-2020</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8265-6235</orcidid><orcidid>https://orcid.org/0000-0002-1359-4536</orcidid><orcidid>https://orcid.org/0000-0003-2347-0956</orcidid><orcidid>https://orcid.org/0000-0003-0390-2424</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-8548 |
ispartof | Atmospheric measurement techniques, 2020-04, Vol.13 (4), p.2015-2033 |
issn | 1867-8548 1867-1381 1867-8548 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e2a98f71f02c452886146990591cc9f4 |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals |
subjects | Aerodynamics Aerosol clouds Aerosol-cloud interactions Aerosols Boundary conditions Cloud interaction Cloud microphysics Clouds Computational fluid dynamics Computer applications Computer simulation Continuous flow Flow velocity Fluid dynamics Fluid flow Humidity Hydrodynamics Hygroscopicity Influence Laboratories Mathematical models Numerical models Numerical simulations Precipitation Reproducibility Simulation Simulators Temperature range Turbulence Wind tunnels |
title | Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20first%20results%20from%20LACIS-T:%20a%20moist-air%20wind%20tunnel%20to%20study%20aerosol%E2%80%93cloud%E2%80%93turbulence%20interactions&rft.jtitle=Atmospheric%20measurement%20techniques&rft.au=Niedermeier,%20Dennis&rft.date=2020-04-21&rft.volume=13&rft.issue=4&rft.spage=2015&rft.epage=2033&rft.pages=2015-2033&rft.issn=1867-8548&rft.eissn=1867-8548&rft_id=info:doi/10.5194/amt-13-2015-2020&rft_dat=%3Cproquest_doaj_%3E2414450145%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-cd27e5df4e443e9f5cbaadcac1311584f6c1c3e040fba26a3c8ac78f437dcc2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414450145&rft_id=info:pmid/&rfr_iscdi=true |