Loading…
Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model
Network security faces increasing threats from denial of service (DoS) and distributed denial of service (DDoS) attacks. The current solutions have not been able to predict and mitigate these threats with enough accuracy. A novel and effective solution for predicting DoS and DDoS attacks in network...
Saved in:
Published in: | Journal of intelligent systems 2024-04, Vol.33 (1), p.619-38 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-7ef38a2a645fab8a88b0639dbfa9d6f1f7acbca770931ce355129c63ff9d055e3 |
container_end_page | 38 |
container_issue | 1 |
container_start_page | 619 |
container_title | Journal of intelligent systems |
container_volume | 33 |
creator | Al-zubidi, Azhar F. Farhan, Alaa Kadhim Towfek, Sayed M. |
description | Network security faces increasing threats from denial of service (DoS) and distributed denial of service (DDoS) attacks. The current solutions have not been able to predict and mitigate these threats with enough accuracy. A novel and effective solution for predicting DoS and DDoS attacks in network security scenarios is presented in this work by employing an effective model, called CNN-LSTM-XGBoost, which is an innovative hybrid approach designed for intrusion detection in network security. The system is applied and analyzed to three datasets: CICIDS-001, CIC-IDS2017, and CIC-IDS2018. We preprocess the data by removing null and duplicate data, handling imbalanced data, and selecting the most relevant features using correlation-based feature selection. The system is evaluated using accuracy, precision,
1 score, and recall. The system achieves a higher accuracy of 98.3% for CICIDS-001, 99.2% for CICIDS2017, and 99.3% for CIC-ID2018, compared to other existing algorithms. The system also reduces the overfitting of the model using the most important features. This study shows that the proposed system is an effective and efficient solution for network attack detection and classification. |
doi_str_mv | 10.1515/jisys-2023-0195 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2b6e034e45f4b139595f6643642c0ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e2b6e034e45f4b139595f6643642c0ec</doaj_id><sourcerecordid>3043643997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7ef38a2a645fab8a88b0639dbfa9d6f1f7acbca770931ce355129c63ff9d055e3</originalsourceid><addsrcrecordid>eNp1UU1r3DAQNaWBLknOvQp6diNZlmzlFpI2DSykkARyU8fSaKuNY20lmeB_X3s3pL1kLvMY3sfAK4rPjH5lgomzrU9TKita8ZIyJT4Uq4opVtJKPn78D38qTlPa0nlqxUQrVsWvnxGtN9kPG3IV7ggMllztQc5gnhLxAxkwv4T4RBKaMfo8kWRwgOhDImNahEB-T130lljEHekR4rCcn4PF_qQ4ctAnPH3dx8XD92_3lz_K9e31zeXFujS8Zbls0PEWKpC1cNC10LYdlVzZzoGy0jHXgOkMNA1VnBnkQrBKGcmdU5YKgfy4uDn42gBbvYv-GeKkA3i9P4S40RCzNz1qrDqJlNc4Z9Ud40oo4aSsuawrQ9HMXl8OXrsY_oyYst6GMQ7z-5rThcaVambW2YFlYkgpontLZVQvreh9K3ppRS-tzIrzg-IF-ozR4iaO0wz-2b-n5Iz_BewMlMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043643997</pqid></control><display><type>article</type><title>Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model</title><source>Walter De Gruyter: Open Access Journals</source><creator>Al-zubidi, Azhar F. ; Farhan, Alaa Kadhim ; Towfek, Sayed M.</creator><creatorcontrib>Al-zubidi, Azhar F. ; Farhan, Alaa Kadhim ; Towfek, Sayed M.</creatorcontrib><description>Network security faces increasing threats from denial of service (DoS) and distributed denial of service (DDoS) attacks. The current solutions have not been able to predict and mitigate these threats with enough accuracy. A novel and effective solution for predicting DoS and DDoS attacks in network security scenarios is presented in this work by employing an effective model, called CNN-LSTM-XGBoost, which is an innovative hybrid approach designed for intrusion detection in network security. The system is applied and analyzed to three datasets: CICIDS-001, CIC-IDS2017, and CIC-IDS2018. We preprocess the data by removing null and duplicate data, handling imbalanced data, and selecting the most relevant features using correlation-based feature selection. The system is evaluated using accuracy, precision,
1 score, and recall. The system achieves a higher accuracy of 98.3% for CICIDS-001, 99.2% for CICIDS2017, and 99.3% for CIC-ID2018, compared to other existing algorithms. The system also reduces the overfitting of the model using the most important features. This study shows that the proposed system is an effective and efficient solution for network attack detection and classification.</description><identifier>ISSN: 2191-026X</identifier><identifier>ISSN: 0334-1860</identifier><identifier>EISSN: 2191-026X</identifier><identifier>DOI: 10.1515/jisys-2023-0195</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Accuracy ; Algorithms ; Classification ; CNN-LSTM-XGBoost model ; Correlation analysis ; correlation-based feature selection ; cyberattack classification ; cyberattack prediction ; Cybersecurity ; Deep learning ; Denial of service attacks ; Feature selection ; Hybrid control systems ; Intelligent systems ; Machine learning ; Network security</subject><ispartof>Journal of intelligent systems, 2024-04, Vol.33 (1), p.619-38</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c381t-7ef38a2a645fab8a88b0639dbfa9d6f1f7acbca770931ce355129c63ff9d055e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jisys-2023-0195/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jisys-2023-0195/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,67158,68942</link.rule.ids></links><search><creatorcontrib>Al-zubidi, Azhar F.</creatorcontrib><creatorcontrib>Farhan, Alaa Kadhim</creatorcontrib><creatorcontrib>Towfek, Sayed M.</creatorcontrib><title>Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model</title><title>Journal of intelligent systems</title><description>Network security faces increasing threats from denial of service (DoS) and distributed denial of service (DDoS) attacks. The current solutions have not been able to predict and mitigate these threats with enough accuracy. A novel and effective solution for predicting DoS and DDoS attacks in network security scenarios is presented in this work by employing an effective model, called CNN-LSTM-XGBoost, which is an innovative hybrid approach designed for intrusion detection in network security. The system is applied and analyzed to three datasets: CICIDS-001, CIC-IDS2017, and CIC-IDS2018. We preprocess the data by removing null and duplicate data, handling imbalanced data, and selecting the most relevant features using correlation-based feature selection. The system is evaluated using accuracy, precision,
1 score, and recall. The system achieves a higher accuracy of 98.3% for CICIDS-001, 99.2% for CICIDS2017, and 99.3% for CIC-ID2018, compared to other existing algorithms. The system also reduces the overfitting of the model using the most important features. This study shows that the proposed system is an effective and efficient solution for network attack detection and classification.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>CNN-LSTM-XGBoost model</subject><subject>Correlation analysis</subject><subject>correlation-based feature selection</subject><subject>cyberattack classification</subject><subject>cyberattack prediction</subject><subject>Cybersecurity</subject><subject>Deep learning</subject><subject>Denial of service attacks</subject><subject>Feature selection</subject><subject>Hybrid control systems</subject><subject>Intelligent systems</subject><subject>Machine learning</subject><subject>Network security</subject><issn>2191-026X</issn><issn>0334-1860</issn><issn>2191-026X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1UU1r3DAQNaWBLknOvQp6diNZlmzlFpI2DSykkARyU8fSaKuNY20lmeB_X3s3pL1kLvMY3sfAK4rPjH5lgomzrU9TKita8ZIyJT4Uq4opVtJKPn78D38qTlPa0nlqxUQrVsWvnxGtN9kPG3IV7ggMllztQc5gnhLxAxkwv4T4RBKaMfo8kWRwgOhDImNahEB-T130lljEHekR4rCcn4PF_qQ4ctAnPH3dx8XD92_3lz_K9e31zeXFujS8Zbls0PEWKpC1cNC10LYdlVzZzoGy0jHXgOkMNA1VnBnkQrBKGcmdU5YKgfy4uDn42gBbvYv-GeKkA3i9P4S40RCzNz1qrDqJlNc4Z9Ud40oo4aSsuawrQ9HMXl8OXrsY_oyYst6GMQ7z-5rThcaVambW2YFlYkgpontLZVQvreh9K3ppRS-tzIrzg-IF-ozR4iaO0wz-2b-n5Iz_BewMlMA</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Al-zubidi, Azhar F.</creator><creator>Farhan, Alaa Kadhim</creator><creator>Towfek, Sayed M.</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>DOA</scope></search><sort><creationdate>20240423</creationdate><title>Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model</title><author>Al-zubidi, Azhar F. ; Farhan, Alaa Kadhim ; Towfek, Sayed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7ef38a2a645fab8a88b0639dbfa9d6f1f7acbca770931ce355129c63ff9d055e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>CNN-LSTM-XGBoost model</topic><topic>Correlation analysis</topic><topic>correlation-based feature selection</topic><topic>cyberattack classification</topic><topic>cyberattack prediction</topic><topic>Cybersecurity</topic><topic>Deep learning</topic><topic>Denial of service attacks</topic><topic>Feature selection</topic><topic>Hybrid control systems</topic><topic>Intelligent systems</topic><topic>Machine learning</topic><topic>Network security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-zubidi, Azhar F.</creatorcontrib><creatorcontrib>Farhan, Alaa Kadhim</creatorcontrib><creatorcontrib>Towfek, Sayed M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-zubidi, Azhar F.</au><au>Farhan, Alaa Kadhim</au><au>Towfek, Sayed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model</atitle><jtitle>Journal of intelligent systems</jtitle><date>2024-04-23</date><risdate>2024</risdate><volume>33</volume><issue>1</issue><spage>619</spage><epage>38</epage><pages>619-38</pages><issn>2191-026X</issn><issn>0334-1860</issn><eissn>2191-026X</eissn><abstract>Network security faces increasing threats from denial of service (DoS) and distributed denial of service (DDoS) attacks. The current solutions have not been able to predict and mitigate these threats with enough accuracy. A novel and effective solution for predicting DoS and DDoS attacks in network security scenarios is presented in this work by employing an effective model, called CNN-LSTM-XGBoost, which is an innovative hybrid approach designed for intrusion detection in network security. The system is applied and analyzed to three datasets: CICIDS-001, CIC-IDS2017, and CIC-IDS2018. We preprocess the data by removing null and duplicate data, handling imbalanced data, and selecting the most relevant features using correlation-based feature selection. The system is evaluated using accuracy, precision,
1 score, and recall. The system achieves a higher accuracy of 98.3% for CICIDS-001, 99.2% for CICIDS2017, and 99.3% for CIC-ID2018, compared to other existing algorithms. The system also reduces the overfitting of the model using the most important features. This study shows that the proposed system is an effective and efficient solution for network attack detection and classification.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jisys-2023-0195</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-026X |
ispartof | Journal of intelligent systems, 2024-04, Vol.33 (1), p.619-38 |
issn | 2191-026X 0334-1860 2191-026X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e2b6e034e45f4b139595f6643642c0ec |
source | Walter De Gruyter: Open Access Journals |
subjects | Accuracy Algorithms Classification CNN-LSTM-XGBoost model Correlation analysis correlation-based feature selection cyberattack classification cyberattack prediction Cybersecurity Deep learning Denial of service attacks Feature selection Hybrid control systems Intelligent systems Machine learning Network security |
title | Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20DoS%20and%20DDoS%20attacks%20in%20network%20security%20scenarios%20using%20a%20hybrid%20deep%20learning%20model&rft.jtitle=Journal%20of%20intelligent%20systems&rft.au=Al-zubidi,%20Azhar%20F.&rft.date=2024-04-23&rft.volume=33&rft.issue=1&rft.spage=619&rft.epage=38&rft.pages=619-38&rft.issn=2191-026X&rft.eissn=2191-026X&rft_id=info:doi/10.1515/jisys-2023-0195&rft_dat=%3Cproquest_doaj_%3E3043643997%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-7ef38a2a645fab8a88b0639dbfa9d6f1f7acbca770931ce355129c63ff9d055e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3043643997&rft_id=info:pmid/&rfr_iscdi=true |