Loading…

Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model

Network security faces increasing threats from denial of service (DoS) and distributed denial of service (DDoS) attacks. The current solutions have not been able to predict and mitigate these threats with enough accuracy. A novel and effective solution for predicting DoS and DDoS attacks in network...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent systems 2024-04, Vol.33 (1), p.619-38
Main Authors: Al-zubidi, Azhar F., Farhan, Alaa Kadhim, Towfek, Sayed M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c381t-7ef38a2a645fab8a88b0639dbfa9d6f1f7acbca770931ce355129c63ff9d055e3
container_end_page 38
container_issue 1
container_start_page 619
container_title Journal of intelligent systems
container_volume 33
creator Al-zubidi, Azhar F.
Farhan, Alaa Kadhim
Towfek, Sayed M.
description Network security faces increasing threats from denial of service (DoS) and distributed denial of service (DDoS) attacks. The current solutions have not been able to predict and mitigate these threats with enough accuracy. A novel and effective solution for predicting DoS and DDoS attacks in network security scenarios is presented in this work by employing an effective model, called CNN-LSTM-XGBoost, which is an innovative hybrid approach designed for intrusion detection in network security. The system is applied and analyzed to three datasets: CICIDS-001, CIC-IDS2017, and CIC-IDS2018. We preprocess the data by removing null and duplicate data, handling imbalanced data, and selecting the most relevant features using correlation-based feature selection. The system is evaluated using accuracy, precision, 1 score, and recall. The system achieves a higher accuracy of 98.3% for CICIDS-001, 99.2% for CICIDS2017, and 99.3% for CIC-ID2018, compared to other existing algorithms. The system also reduces the overfitting of the model using the most important features. This study shows that the proposed system is an effective and efficient solution for network attack detection and classification.
doi_str_mv 10.1515/jisys-2023-0195
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2b6e034e45f4b139595f6643642c0ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e2b6e034e45f4b139595f6643642c0ec</doaj_id><sourcerecordid>3043643997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-7ef38a2a645fab8a88b0639dbfa9d6f1f7acbca770931ce355129c63ff9d055e3</originalsourceid><addsrcrecordid>eNp1UU1r3DAQNaWBLknOvQp6diNZlmzlFpI2DSykkARyU8fSaKuNY20lmeB_X3s3pL1kLvMY3sfAK4rPjH5lgomzrU9TKita8ZIyJT4Uq4opVtJKPn78D38qTlPa0nlqxUQrVsWvnxGtN9kPG3IV7ggMllztQc5gnhLxAxkwv4T4RBKaMfo8kWRwgOhDImNahEB-T130lljEHekR4rCcn4PF_qQ4ctAnPH3dx8XD92_3lz_K9e31zeXFujS8Zbls0PEWKpC1cNC10LYdlVzZzoGy0jHXgOkMNA1VnBnkQrBKGcmdU5YKgfy4uDn42gBbvYv-GeKkA3i9P4S40RCzNz1qrDqJlNc4Z9Ud40oo4aSsuawrQ9HMXl8OXrsY_oyYst6GMQ7z-5rThcaVambW2YFlYkgpontLZVQvreh9K3ppRS-tzIrzg-IF-ozR4iaO0wz-2b-n5Iz_BewMlMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043643997</pqid></control><display><type>article</type><title>Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model</title><source>Walter De Gruyter: Open Access Journals</source><creator>Al-zubidi, Azhar F. ; Farhan, Alaa Kadhim ; Towfek, Sayed M.</creator><creatorcontrib>Al-zubidi, Azhar F. ; Farhan, Alaa Kadhim ; Towfek, Sayed M.</creatorcontrib><description>Network security faces increasing threats from denial of service (DoS) and distributed denial of service (DDoS) attacks. The current solutions have not been able to predict and mitigate these threats with enough accuracy. A novel and effective solution for predicting DoS and DDoS attacks in network security scenarios is presented in this work by employing an effective model, called CNN-LSTM-XGBoost, which is an innovative hybrid approach designed for intrusion detection in network security. The system is applied and analyzed to three datasets: CICIDS-001, CIC-IDS2017, and CIC-IDS2018. We preprocess the data by removing null and duplicate data, handling imbalanced data, and selecting the most relevant features using correlation-based feature selection. The system is evaluated using accuracy, precision, 1 score, and recall. The system achieves a higher accuracy of 98.3% for CICIDS-001, 99.2% for CICIDS2017, and 99.3% for CIC-ID2018, compared to other existing algorithms. The system also reduces the overfitting of the model using the most important features. This study shows that the proposed system is an effective and efficient solution for network attack detection and classification.</description><identifier>ISSN: 2191-026X</identifier><identifier>ISSN: 0334-1860</identifier><identifier>EISSN: 2191-026X</identifier><identifier>DOI: 10.1515/jisys-2023-0195</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Accuracy ; Algorithms ; Classification ; CNN-LSTM-XGBoost model ; Correlation analysis ; correlation-based feature selection ; cyberattack classification ; cyberattack prediction ; Cybersecurity ; Deep learning ; Denial of service attacks ; Feature selection ; Hybrid control systems ; Intelligent systems ; Machine learning ; Network security</subject><ispartof>Journal of intelligent systems, 2024-04, Vol.33 (1), p.619-38</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c381t-7ef38a2a645fab8a88b0639dbfa9d6f1f7acbca770931ce355129c63ff9d055e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jisys-2023-0195/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jisys-2023-0195/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,67158,68942</link.rule.ids></links><search><creatorcontrib>Al-zubidi, Azhar F.</creatorcontrib><creatorcontrib>Farhan, Alaa Kadhim</creatorcontrib><creatorcontrib>Towfek, Sayed M.</creatorcontrib><title>Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model</title><title>Journal of intelligent systems</title><description>Network security faces increasing threats from denial of service (DoS) and distributed denial of service (DDoS) attacks. The current solutions have not been able to predict and mitigate these threats with enough accuracy. A novel and effective solution for predicting DoS and DDoS attacks in network security scenarios is presented in this work by employing an effective model, called CNN-LSTM-XGBoost, which is an innovative hybrid approach designed for intrusion detection in network security. The system is applied and analyzed to three datasets: CICIDS-001, CIC-IDS2017, and CIC-IDS2018. We preprocess the data by removing null and duplicate data, handling imbalanced data, and selecting the most relevant features using correlation-based feature selection. The system is evaluated using accuracy, precision, 1 score, and recall. The system achieves a higher accuracy of 98.3% for CICIDS-001, 99.2% for CICIDS2017, and 99.3% for CIC-ID2018, compared to other existing algorithms. The system also reduces the overfitting of the model using the most important features. This study shows that the proposed system is an effective and efficient solution for network attack detection and classification.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>CNN-LSTM-XGBoost model</subject><subject>Correlation analysis</subject><subject>correlation-based feature selection</subject><subject>cyberattack classification</subject><subject>cyberattack prediction</subject><subject>Cybersecurity</subject><subject>Deep learning</subject><subject>Denial of service attacks</subject><subject>Feature selection</subject><subject>Hybrid control systems</subject><subject>Intelligent systems</subject><subject>Machine learning</subject><subject>Network security</subject><issn>2191-026X</issn><issn>0334-1860</issn><issn>2191-026X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1UU1r3DAQNaWBLknOvQp6diNZlmzlFpI2DSykkARyU8fSaKuNY20lmeB_X3s3pL1kLvMY3sfAK4rPjH5lgomzrU9TKita8ZIyJT4Uq4opVtJKPn78D38qTlPa0nlqxUQrVsWvnxGtN9kPG3IV7ggMllztQc5gnhLxAxkwv4T4RBKaMfo8kWRwgOhDImNahEB-T130lljEHekR4rCcn4PF_qQ4ctAnPH3dx8XD92_3lz_K9e31zeXFujS8Zbls0PEWKpC1cNC10LYdlVzZzoGy0jHXgOkMNA1VnBnkQrBKGcmdU5YKgfy4uDn42gBbvYv-GeKkA3i9P4S40RCzNz1qrDqJlNc4Z9Ud40oo4aSsuawrQ9HMXl8OXrsY_oyYst6GMQ7z-5rThcaVambW2YFlYkgpontLZVQvreh9K3ppRS-tzIrzg-IF-ozR4iaO0wz-2b-n5Iz_BewMlMA</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Al-zubidi, Azhar F.</creator><creator>Farhan, Alaa Kadhim</creator><creator>Towfek, Sayed M.</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>DOA</scope></search><sort><creationdate>20240423</creationdate><title>Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model</title><author>Al-zubidi, Azhar F. ; Farhan, Alaa Kadhim ; Towfek, Sayed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-7ef38a2a645fab8a88b0639dbfa9d6f1f7acbca770931ce355129c63ff9d055e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>CNN-LSTM-XGBoost model</topic><topic>Correlation analysis</topic><topic>correlation-based feature selection</topic><topic>cyberattack classification</topic><topic>cyberattack prediction</topic><topic>Cybersecurity</topic><topic>Deep learning</topic><topic>Denial of service attacks</topic><topic>Feature selection</topic><topic>Hybrid control systems</topic><topic>Intelligent systems</topic><topic>Machine learning</topic><topic>Network security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-zubidi, Azhar F.</creatorcontrib><creatorcontrib>Farhan, Alaa Kadhim</creatorcontrib><creatorcontrib>Towfek, Sayed M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-zubidi, Azhar F.</au><au>Farhan, Alaa Kadhim</au><au>Towfek, Sayed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model</atitle><jtitle>Journal of intelligent systems</jtitle><date>2024-04-23</date><risdate>2024</risdate><volume>33</volume><issue>1</issue><spage>619</spage><epage>38</epage><pages>619-38</pages><issn>2191-026X</issn><issn>0334-1860</issn><eissn>2191-026X</eissn><abstract>Network security faces increasing threats from denial of service (DoS) and distributed denial of service (DDoS) attacks. The current solutions have not been able to predict and mitigate these threats with enough accuracy. A novel and effective solution for predicting DoS and DDoS attacks in network security scenarios is presented in this work by employing an effective model, called CNN-LSTM-XGBoost, which is an innovative hybrid approach designed for intrusion detection in network security. The system is applied and analyzed to three datasets: CICIDS-001, CIC-IDS2017, and CIC-IDS2018. We preprocess the data by removing null and duplicate data, handling imbalanced data, and selecting the most relevant features using correlation-based feature selection. The system is evaluated using accuracy, precision, 1 score, and recall. The system achieves a higher accuracy of 98.3% for CICIDS-001, 99.2% for CICIDS2017, and 99.3% for CIC-ID2018, compared to other existing algorithms. The system also reduces the overfitting of the model using the most important features. This study shows that the proposed system is an effective and efficient solution for network attack detection and classification.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jisys-2023-0195</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2191-026X
ispartof Journal of intelligent systems, 2024-04, Vol.33 (1), p.619-38
issn 2191-026X
0334-1860
2191-026X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e2b6e034e45f4b139595f6643642c0ec
source Walter De Gruyter: Open Access Journals
subjects Accuracy
Algorithms
Classification
CNN-LSTM-XGBoost model
Correlation analysis
correlation-based feature selection
cyberattack classification
cyberattack prediction
Cybersecurity
Deep learning
Denial of service attacks
Feature selection
Hybrid control systems
Intelligent systems
Machine learning
Network security
title Predicting DoS and DDoS attacks in network security scenarios using a hybrid deep learning model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20DoS%20and%20DDoS%20attacks%20in%20network%20security%20scenarios%20using%20a%20hybrid%20deep%20learning%20model&rft.jtitle=Journal%20of%20intelligent%20systems&rft.au=Al-zubidi,%20Azhar%20F.&rft.date=2024-04-23&rft.volume=33&rft.issue=1&rft.spage=619&rft.epage=38&rft.pages=619-38&rft.issn=2191-026X&rft.eissn=2191-026X&rft_id=info:doi/10.1515/jisys-2023-0195&rft_dat=%3Cproquest_doaj_%3E3043643997%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-7ef38a2a645fab8a88b0639dbfa9d6f1f7acbca770931ce355129c63ff9d055e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3043643997&rft_id=info:pmid/&rfr_iscdi=true