Loading…
Machine learning and artificial intelligence: applications in healthcare epidemiology
Artificial intelligence (AI) refers to the performance of tasks by machines ordinarily associated with human intelligence. Machine learning (ML) is a subtype of AI; it refers to the ability of computers to draw conclusions (ie, learn) from data without being directly programmed. ML builds from tradi...
Saved in:
Published in: | Antimicrobial stewardship & healthcare epidemiology : ASHE 2021-01, Vol.1 (1), p.e28-e28, Article e28 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-313949808e19ec1a69264c83f0c41247883e656a19e769946681a8298950dfe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-313949808e19ec1a69264c83f0c41247883e656a19e769946681a8298950dfe3 |
container_end_page | e28 |
container_issue | 1 |
container_start_page | e28 |
container_title | Antimicrobial stewardship & healthcare epidemiology : ASHE |
container_volume | 1 |
creator | Hamilton, Alisa J. Strauss, Alexandra T. Martinez, Diego A. Hinson, Jeremiah S. Levin, Scott Lin, Gary Klein, Eili Y. |
description | Artificial intelligence (AI) refers to the performance of tasks by machines ordinarily associated with human intelligence. Machine learning (ML) is a subtype of AI; it refers to the ability of computers to draw conclusions (ie, learn) from data without being directly programmed. ML builds from traditional statistical methods and has drawn significant interest in healthcare epidemiology due to its potential for improving disease prediction and patient care. This review provides an overview of ML in healthcare epidemiology and practical examples of ML tools used to support healthcare decision making at 4 stages of hospital-based care: triage, diagnosis, treatment, and discharge. Examples include model-building efforts to assist emergency department triage, predicting time before septic shock onset, detecting community-acquired pneumonia, and classifying COVID-19 disposition risk level. Increasing availability and quality of electronic health record (EHR) data as well as computing power provides opportunities for ML to increase patient safety, improve the efficiency of clinical management, and reduce healthcare costs. |
doi_str_mv | 10.1017/ash.2021.192 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2d03da9d8c4408987181f002cc39fe7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e2d03da9d8c4408987181f002cc39fe7</doaj_id><sourcerecordid>2718963724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-313949808e19ec1a69264c83f0c41247883e656a19e769946681a8298950dfe3</originalsourceid><addsrcrecordid>eNpdkc1q3DAUhU1poCHJLg9g6CaLzkR_tqQuCiU0bSClmwlkJ27la1uDRnIlT2HePprMEJKsJHQOn-49p6ouKVlSQuU15HHJCKNLqtmH6pRJzhZCi8ePr-6fqouc14QQpiiRWp5WD7_Bji5g7RFScGGoIXQ1pNn1zjrwtQszeu8GDBa_1jBN3lmYXQy5SPWI4OfRQsIaJ9fhxkUfh915ddKDz3hxPM-q1e2P1c2vxf2fn3c33-8XVjTNvOCUa6EVUUg1WgqtZq2wivfECsqEVIpj27RQVNlqLdpWUVBMK92Qrkd-Vt0dsF2EtZmS20DamQjOPD_ENJj9JtajQdYR3oHulBWCKK0kVbQvQVjLdY-ysL4dWNP27wY7i2FO4N9A3yrBjWaI_03ZoBGEFMDVEZDivy3m2WxctiU7CBi32bDyo265ZKJYP7-zruM2hZJUcXFKG8KegV8OLptizgn7l2EoMfvKTanc7Cs3pXL-BMOhnk8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731150200</pqid></control><display><type>article</type><title>Machine learning and artificial intelligence: applications in healthcare epidemiology</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Cambridge University Press</source><source>Coronavirus Research Database</source><creator>Hamilton, Alisa J. ; Strauss, Alexandra T. ; Martinez, Diego A. ; Hinson, Jeremiah S. ; Levin, Scott ; Lin, Gary ; Klein, Eili Y.</creator><creatorcontrib>Hamilton, Alisa J. ; Strauss, Alexandra T. ; Martinez, Diego A. ; Hinson, Jeremiah S. ; Levin, Scott ; Lin, Gary ; Klein, Eili Y.</creatorcontrib><description>Artificial intelligence (AI) refers to the performance of tasks by machines ordinarily associated with human intelligence. Machine learning (ML) is a subtype of AI; it refers to the ability of computers to draw conclusions (ie, learn) from data without being directly programmed. ML builds from traditional statistical methods and has drawn significant interest in healthcare epidemiology due to its potential for improving disease prediction and patient care. This review provides an overview of ML in healthcare epidemiology and practical examples of ML tools used to support healthcare decision making at 4 stages of hospital-based care: triage, diagnosis, treatment, and discharge. Examples include model-building efforts to assist emergency department triage, predicting time before septic shock onset, detecting community-acquired pneumonia, and classifying COVID-19 disposition risk level. Increasing availability and quality of electronic health record (EHR) data as well as computing power provides opportunities for ML to increase patient safety, improve the efficiency of clinical management, and reduce healthcare costs.</description><identifier>ISSN: 2732-494X</identifier><identifier>EISSN: 2732-494X</identifier><identifier>DOI: 10.1017/ash.2021.192</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Bias ; Clinical outcomes ; Computers ; Datasets ; Decision making ; Decision trees ; Dependent variables ; Disease prevention ; Electronic health records ; Emergency medical care ; Emergency medical services ; Epidemiology ; Generalized linear models ; Health care ; Machine learning ; Patients ; Review ; Statistical methods</subject><ispartof>Antimicrobial stewardship & healthcare epidemiology : ASHE, 2021-01, Vol.1 (1), p.e28-e28, Article e28</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021 2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-313949808e19ec1a69264c83f0c41247883e656a19e769946681a8298950dfe3</citedby><cites>FETCH-LOGICAL-c455t-313949808e19ec1a69264c83f0c41247883e656a19e769946681a8298950dfe3</cites><orcidid>0000-0001-8783-9383 ; 0000-0002-1304-5289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2731150200/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2731150200?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74284,74998</link.rule.ids></links><search><creatorcontrib>Hamilton, Alisa J.</creatorcontrib><creatorcontrib>Strauss, Alexandra T.</creatorcontrib><creatorcontrib>Martinez, Diego A.</creatorcontrib><creatorcontrib>Hinson, Jeremiah S.</creatorcontrib><creatorcontrib>Levin, Scott</creatorcontrib><creatorcontrib>Lin, Gary</creatorcontrib><creatorcontrib>Klein, Eili Y.</creatorcontrib><title>Machine learning and artificial intelligence: applications in healthcare epidemiology</title><title>Antimicrobial stewardship & healthcare epidemiology : ASHE</title><description>Artificial intelligence (AI) refers to the performance of tasks by machines ordinarily associated with human intelligence. Machine learning (ML) is a subtype of AI; it refers to the ability of computers to draw conclusions (ie, learn) from data without being directly programmed. ML builds from traditional statistical methods and has drawn significant interest in healthcare epidemiology due to its potential for improving disease prediction and patient care. This review provides an overview of ML in healthcare epidemiology and practical examples of ML tools used to support healthcare decision making at 4 stages of hospital-based care: triage, diagnosis, treatment, and discharge. Examples include model-building efforts to assist emergency department triage, predicting time before septic shock onset, detecting community-acquired pneumonia, and classifying COVID-19 disposition risk level. Increasing availability and quality of electronic health record (EHR) data as well as computing power provides opportunities for ML to increase patient safety, improve the efficiency of clinical management, and reduce healthcare costs.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bias</subject><subject>Clinical outcomes</subject><subject>Computers</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Dependent variables</subject><subject>Disease prevention</subject><subject>Electronic health records</subject><subject>Emergency medical care</subject><subject>Emergency medical services</subject><subject>Epidemiology</subject><subject>Generalized linear models</subject><subject>Health care</subject><subject>Machine learning</subject><subject>Patients</subject><subject>Review</subject><subject>Statistical methods</subject><issn>2732-494X</issn><issn>2732-494X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1q3DAUhU1poCHJLg9g6CaLzkR_tqQuCiU0bSClmwlkJ27la1uDRnIlT2HePprMEJKsJHQOn-49p6ouKVlSQuU15HHJCKNLqtmH6pRJzhZCi8ePr-6fqouc14QQpiiRWp5WD7_Bji5g7RFScGGoIXQ1pNn1zjrwtQszeu8GDBa_1jBN3lmYXQy5SPWI4OfRQsIaJ9fhxkUfh915ddKDz3hxPM-q1e2P1c2vxf2fn3c33-8XVjTNvOCUa6EVUUg1WgqtZq2wivfECsqEVIpj27RQVNlqLdpWUVBMK92Qrkd-Vt0dsF2EtZmS20DamQjOPD_ENJj9JtajQdYR3oHulBWCKK0kVbQvQVjLdY-ysL4dWNP27wY7i2FO4N9A3yrBjWaI_03ZoBGEFMDVEZDivy3m2WxctiU7CBi32bDyo265ZKJYP7-zruM2hZJUcXFKG8KegV8OLptizgn7l2EoMfvKTanc7Cs3pXL-BMOhnk8</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hamilton, Alisa J.</creator><creator>Strauss, Alexandra T.</creator><creator>Martinez, Diego A.</creator><creator>Hinson, Jeremiah S.</creator><creator>Levin, Scott</creator><creator>Lin, Gary</creator><creator>Klein, Eili Y.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8783-9383</orcidid><orcidid>https://orcid.org/0000-0002-1304-5289</orcidid></search><sort><creationdate>20210101</creationdate><title>Machine learning and artificial intelligence: applications in healthcare epidemiology</title><author>Hamilton, Alisa J. ; Strauss, Alexandra T. ; Martinez, Diego A. ; Hinson, Jeremiah S. ; Levin, Scott ; Lin, Gary ; Klein, Eili Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-313949808e19ec1a69264c83f0c41247883e656a19e769946681a8298950dfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bias</topic><topic>Clinical outcomes</topic><topic>Computers</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Dependent variables</topic><topic>Disease prevention</topic><topic>Electronic health records</topic><topic>Emergency medical care</topic><topic>Emergency medical services</topic><topic>Epidemiology</topic><topic>Generalized linear models</topic><topic>Health care</topic><topic>Machine learning</topic><topic>Patients</topic><topic>Review</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, Alisa J.</creatorcontrib><creatorcontrib>Strauss, Alexandra T.</creatorcontrib><creatorcontrib>Martinez, Diego A.</creatorcontrib><creatorcontrib>Hinson, Jeremiah S.</creatorcontrib><creatorcontrib>Levin, Scott</creatorcontrib><creatorcontrib>Lin, Gary</creatorcontrib><creatorcontrib>Klein, Eili Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Healthcare Administration Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antimicrobial stewardship & healthcare epidemiology : ASHE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, Alisa J.</au><au>Strauss, Alexandra T.</au><au>Martinez, Diego A.</au><au>Hinson, Jeremiah S.</au><au>Levin, Scott</au><au>Lin, Gary</au><au>Klein, Eili Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and artificial intelligence: applications in healthcare epidemiology</atitle><jtitle>Antimicrobial stewardship & healthcare epidemiology : ASHE</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>1</volume><issue>1</issue><spage>e28</spage><epage>e28</epage><pages>e28-e28</pages><artnum>e28</artnum><issn>2732-494X</issn><eissn>2732-494X</eissn><abstract>Artificial intelligence (AI) refers to the performance of tasks by machines ordinarily associated with human intelligence. Machine learning (ML) is a subtype of AI; it refers to the ability of computers to draw conclusions (ie, learn) from data without being directly programmed. ML builds from traditional statistical methods and has drawn significant interest in healthcare epidemiology due to its potential for improving disease prediction and patient care. This review provides an overview of ML in healthcare epidemiology and practical examples of ML tools used to support healthcare decision making at 4 stages of hospital-based care: triage, diagnosis, treatment, and discharge. Examples include model-building efforts to assist emergency department triage, predicting time before septic shock onset, detecting community-acquired pneumonia, and classifying COVID-19 disposition risk level. Increasing availability and quality of electronic health record (EHR) data as well as computing power provides opportunities for ML to increase patient safety, improve the efficiency of clinical management, and reduce healthcare costs.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/ash.2021.192</doi><orcidid>https://orcid.org/0000-0001-8783-9383</orcidid><orcidid>https://orcid.org/0000-0002-1304-5289</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2732-494X |
ispartof | Antimicrobial stewardship & healthcare epidemiology : ASHE, 2021-01, Vol.1 (1), p.e28-e28, Article e28 |
issn | 2732-494X 2732-494X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e2d03da9d8c4408987181f002cc39fe7 |
source | PubMed Central (Open Access); Publicly Available Content (ProQuest); Cambridge University Press; Coronavirus Research Database |
subjects | Accuracy Algorithms Artificial intelligence Bias Clinical outcomes Computers Datasets Decision making Decision trees Dependent variables Disease prevention Electronic health records Emergency medical care Emergency medical services Epidemiology Generalized linear models Health care Machine learning Patients Review Statistical methods |
title | Machine learning and artificial intelligence: applications in healthcare epidemiology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20artificial%20intelligence:%20applications%20in%20healthcare%20epidemiology&rft.jtitle=Antimicrobial%20stewardship%20&%20healthcare%20epidemiology%20:%20ASHE&rft.au=Hamilton,%20Alisa%20J.&rft.date=2021-01-01&rft.volume=1&rft.issue=1&rft.spage=e28&rft.epage=e28&rft.pages=e28-e28&rft.artnum=e28&rft.issn=2732-494X&rft.eissn=2732-494X&rft_id=info:doi/10.1017/ash.2021.192&rft_dat=%3Cproquest_doaj_%3E2718963724%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-313949808e19ec1a69264c83f0c41247883e656a19e769946681a8298950dfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731150200&rft_id=info:pmid/&rfr_iscdi=true |