Loading…
New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance
Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the f...
Saved in:
Published in: | Membranes (Basel) 2022-08, Vol.12 (9), p.827 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53 |
container_end_page | |
container_issue | 9 |
container_start_page | 827 |
container_title | Membranes (Basel) |
container_volume | 12 |
creator | Primachenko, Oleg N. Kulvelis, Yuri V. Odinokov, Alexei S. Glebova, Nadezhda V. Krasnova, Anna O. Antokolskiy, Lev A. Nechitailov, Andrey A. Shvidchenko, Alexander V. Gofman, Iosif V. Marinenko, Elena A. Yevlampieva, Natalia P. Lebedev, Vasily T. Kuklin, Alexander I. |
description | Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0–5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4–5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane–electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22–120 °C) compared to pure membranes without additives. |
doi_str_mv | 10.3390/membranes12090827 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2ebfcfda6594f999e0f6c751e4dd262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745884634</galeid><doaj_id>oai_doaj_org_article_e2ebfcfda6594f999e0f6c751e4dd262</doaj_id><sourcerecordid>A745884634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53</originalsourceid><addsrcrecordid>eNplUs1uEzEQXiEQrUIfgJslLlxSvPZ6veaAFKX0RyqFQzlbE3ucOtq1U3u3VcU78RA8GQ4piIJ98Hj8fd-MZ6aqXtf0mHNF3w04rBIEzDWjinZMPqsOGZVyTrkUz_-yD6qjnDe0rJaKltOX1QFvay66pj2svl3hPTnDgAlGHwOJjizjsI3Z767Qk8Xt5O-K-eP7_Pphi-TT77Dk3o835ApCtB6GGGwmLiZy_mBTXGMgpxP2ZIl9n9-TE8x-HQgES75gKrABgsFX1QsHfcajx3NWfT39eL08n19-PrtYLi7npuFqnLeMWymUqtXKdK1xyEA1BrhF6qRbWRSMIqO1USA6xwE4Z7KjBlhtC1XwWXWx17URNnqb_ADpQUfw-pcjprWGNHrTo0aGK2echVaoximlSozWSFFjYy0rmcyqD3ut7bQa0BoMY4L-iejTl-Bv9DreaSVo0zBVBN4-CqR4O2Ee9eCzKWUqNY1T1kzWrWpYS2WBvvkHuolTKk3Zo4SgHd9ldLxHraF8wAcXS1xTtsXBmxjQ-eJfyEZ0peO8KYR6TzAp5pzQ_cm-pno3Wvq_0eI_AbAqxN8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716550832</pqid></control><display><type>article</type><title>New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Primachenko, Oleg N. ; Kulvelis, Yuri V. ; Odinokov, Alexei S. ; Glebova, Nadezhda V. ; Krasnova, Anna O. ; Antokolskiy, Lev A. ; Nechitailov, Andrey A. ; Shvidchenko, Alexander V. ; Gofman, Iosif V. ; Marinenko, Elena A. ; Yevlampieva, Natalia P. ; Lebedev, Vasily T. ; Kuklin, Alexander I.</creator><creatorcontrib>Primachenko, Oleg N. ; Kulvelis, Yuri V. ; Odinokov, Alexei S. ; Glebova, Nadezhda V. ; Krasnova, Anna O. ; Antokolskiy, Lev A. ; Nechitailov, Andrey A. ; Shvidchenko, Alexander V. ; Gofman, Iosif V. ; Marinenko, Elena A. ; Yevlampieva, Natalia P. ; Lebedev, Vasily T. ; Kuklin, Alexander I.</creatorcontrib><description>Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0–5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4–5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane–electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22–120 °C) compared to pure membranes without additives.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes12090827</identifier><identifier>PMID: 36135846</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Additives ; Alternative energy sources ; Aquivion ; Copolymers ; Detonation ; Diamonds ; Electrical measurement ; Fine structure ; Fuel cell industry ; Fuel cells ; Fuel technology ; Heat resistance ; High temperature ; Hydrogen ; Hydrogen as fuel ; Hydrogen fuels ; ion-conducting ; Membranes ; membrane–electrode assembly ; nanodiamonds ; Nanostructure ; Neutron scattering ; Performance enhancement ; Polymers ; Potentiometric analysis ; proton exchange membrane ; Protons ; Renewable resources ; Scanning electron microscopy ; small-angle neutron scattering ; Thermogravimetric analysis ; Ultrastructure ; Water-power</subject><ispartof>Membranes (Basel), 2022-08, Vol.12 (9), p.827</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53</citedby><cites>FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53</cites><orcidid>0000-0003-4519-0111 ; 0000-0002-3228-3039 ; 0000-0002-1939-2660 ; 0000-0003-0277-2904 ; 0000-0002-5417-7472 ; 0000-0003-4894-0862 ; 0000-0001-6709-5559 ; 0000-0003-1637-8537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716550832/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716550832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Primachenko, Oleg N.</creatorcontrib><creatorcontrib>Kulvelis, Yuri V.</creatorcontrib><creatorcontrib>Odinokov, Alexei S.</creatorcontrib><creatorcontrib>Glebova, Nadezhda V.</creatorcontrib><creatorcontrib>Krasnova, Anna O.</creatorcontrib><creatorcontrib>Antokolskiy, Lev A.</creatorcontrib><creatorcontrib>Nechitailov, Andrey A.</creatorcontrib><creatorcontrib>Shvidchenko, Alexander V.</creatorcontrib><creatorcontrib>Gofman, Iosif V.</creatorcontrib><creatorcontrib>Marinenko, Elena A.</creatorcontrib><creatorcontrib>Yevlampieva, Natalia P.</creatorcontrib><creatorcontrib>Lebedev, Vasily T.</creatorcontrib><creatorcontrib>Kuklin, Alexander I.</creatorcontrib><title>New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance</title><title>Membranes (Basel)</title><description>Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0–5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4–5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane–electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22–120 °C) compared to pure membranes without additives.</description><subject>Acids</subject><subject>Additives</subject><subject>Alternative energy sources</subject><subject>Aquivion</subject><subject>Copolymers</subject><subject>Detonation</subject><subject>Diamonds</subject><subject>Electrical measurement</subject><subject>Fine structure</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Hydrogen as fuel</subject><subject>Hydrogen fuels</subject><subject>ion-conducting</subject><subject>Membranes</subject><subject>membrane–electrode assembly</subject><subject>nanodiamonds</subject><subject>Nanostructure</subject><subject>Neutron scattering</subject><subject>Performance enhancement</subject><subject>Polymers</subject><subject>Potentiometric analysis</subject><subject>proton exchange membrane</subject><subject>Protons</subject><subject>Renewable resources</subject><subject>Scanning electron microscopy</subject><subject>small-angle neutron scattering</subject><subject>Thermogravimetric analysis</subject><subject>Ultrastructure</subject><subject>Water-power</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUs1uEzEQXiEQrUIfgJslLlxSvPZ6veaAFKX0RyqFQzlbE3ucOtq1U3u3VcU78RA8GQ4piIJ98Hj8fd-MZ6aqXtf0mHNF3w04rBIEzDWjinZMPqsOGZVyTrkUz_-yD6qjnDe0rJaKltOX1QFvay66pj2svl3hPTnDgAlGHwOJjizjsI3Z767Qk8Xt5O-K-eP7_Pphi-TT77Dk3o835ApCtB6GGGwmLiZy_mBTXGMgpxP2ZIl9n9-TE8x-HQgES75gKrABgsFX1QsHfcajx3NWfT39eL08n19-PrtYLi7npuFqnLeMWymUqtXKdK1xyEA1BrhF6qRbWRSMIqO1USA6xwE4Z7KjBlhtC1XwWXWx17URNnqb_ADpQUfw-pcjprWGNHrTo0aGK2echVaoximlSozWSFFjYy0rmcyqD3ut7bQa0BoMY4L-iejTl-Bv9DreaSVo0zBVBN4-CqR4O2Ee9eCzKWUqNY1T1kzWrWpYS2WBvvkHuolTKk3Zo4SgHd9ldLxHraF8wAcXS1xTtsXBmxjQ-eJfyEZ0peO8KYR6TzAp5pzQ_cm-pno3Wvq_0eI_AbAqxN8</recordid><startdate>20220824</startdate><enddate>20220824</enddate><creator>Primachenko, Oleg N.</creator><creator>Kulvelis, Yuri V.</creator><creator>Odinokov, Alexei S.</creator><creator>Glebova, Nadezhda V.</creator><creator>Krasnova, Anna O.</creator><creator>Antokolskiy, Lev A.</creator><creator>Nechitailov, Andrey A.</creator><creator>Shvidchenko, Alexander V.</creator><creator>Gofman, Iosif V.</creator><creator>Marinenko, Elena A.</creator><creator>Yevlampieva, Natalia P.</creator><creator>Lebedev, Vasily T.</creator><creator>Kuklin, Alexander I.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4519-0111</orcidid><orcidid>https://orcid.org/0000-0002-3228-3039</orcidid><orcidid>https://orcid.org/0000-0002-1939-2660</orcidid><orcidid>https://orcid.org/0000-0003-0277-2904</orcidid><orcidid>https://orcid.org/0000-0002-5417-7472</orcidid><orcidid>https://orcid.org/0000-0003-4894-0862</orcidid><orcidid>https://orcid.org/0000-0001-6709-5559</orcidid><orcidid>https://orcid.org/0000-0003-1637-8537</orcidid></search><sort><creationdate>20220824</creationdate><title>New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance</title><author>Primachenko, Oleg N. ; Kulvelis, Yuri V. ; Odinokov, Alexei S. ; Glebova, Nadezhda V. ; Krasnova, Anna O. ; Antokolskiy, Lev A. ; Nechitailov, Andrey A. ; Shvidchenko, Alexander V. ; Gofman, Iosif V. ; Marinenko, Elena A. ; Yevlampieva, Natalia P. ; Lebedev, Vasily T. ; Kuklin, Alexander I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Additives</topic><topic>Alternative energy sources</topic><topic>Aquivion</topic><topic>Copolymers</topic><topic>Detonation</topic><topic>Diamonds</topic><topic>Electrical measurement</topic><topic>Fine structure</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Hydrogen as fuel</topic><topic>Hydrogen fuels</topic><topic>ion-conducting</topic><topic>Membranes</topic><topic>membrane–electrode assembly</topic><topic>nanodiamonds</topic><topic>Nanostructure</topic><topic>Neutron scattering</topic><topic>Performance enhancement</topic><topic>Polymers</topic><topic>Potentiometric analysis</topic><topic>proton exchange membrane</topic><topic>Protons</topic><topic>Renewable resources</topic><topic>Scanning electron microscopy</topic><topic>small-angle neutron scattering</topic><topic>Thermogravimetric analysis</topic><topic>Ultrastructure</topic><topic>Water-power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Primachenko, Oleg N.</creatorcontrib><creatorcontrib>Kulvelis, Yuri V.</creatorcontrib><creatorcontrib>Odinokov, Alexei S.</creatorcontrib><creatorcontrib>Glebova, Nadezhda V.</creatorcontrib><creatorcontrib>Krasnova, Anna O.</creatorcontrib><creatorcontrib>Antokolskiy, Lev A.</creatorcontrib><creatorcontrib>Nechitailov, Andrey A.</creatorcontrib><creatorcontrib>Shvidchenko, Alexander V.</creatorcontrib><creatorcontrib>Gofman, Iosif V.</creatorcontrib><creatorcontrib>Marinenko, Elena A.</creatorcontrib><creatorcontrib>Yevlampieva, Natalia P.</creatorcontrib><creatorcontrib>Lebedev, Vasily T.</creatorcontrib><creatorcontrib>Kuklin, Alexander I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Primachenko, Oleg N.</au><au>Kulvelis, Yuri V.</au><au>Odinokov, Alexei S.</au><au>Glebova, Nadezhda V.</au><au>Krasnova, Anna O.</au><au>Antokolskiy, Lev A.</au><au>Nechitailov, Andrey A.</au><au>Shvidchenko, Alexander V.</au><au>Gofman, Iosif V.</au><au>Marinenko, Elena A.</au><au>Yevlampieva, Natalia P.</au><au>Lebedev, Vasily T.</au><au>Kuklin, Alexander I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance</atitle><jtitle>Membranes (Basel)</jtitle><date>2022-08-24</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>827</spage><pages>827-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0–5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4–5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane–electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22–120 °C) compared to pure membranes without additives.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36135846</pmid><doi>10.3390/membranes12090827</doi><orcidid>https://orcid.org/0000-0003-4519-0111</orcidid><orcidid>https://orcid.org/0000-0002-3228-3039</orcidid><orcidid>https://orcid.org/0000-0002-1939-2660</orcidid><orcidid>https://orcid.org/0000-0003-0277-2904</orcidid><orcidid>https://orcid.org/0000-0002-5417-7472</orcidid><orcidid>https://orcid.org/0000-0003-4894-0862</orcidid><orcidid>https://orcid.org/0000-0001-6709-5559</orcidid><orcidid>https://orcid.org/0000-0003-1637-8537</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0375 |
ispartof | Membranes (Basel), 2022-08, Vol.12 (9), p.827 |
issn | 2077-0375 2077-0375 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e2ebfcfda6594f999e0f6c751e4dd262 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database |
subjects | Acids Additives Alternative energy sources Aquivion Copolymers Detonation Diamonds Electrical measurement Fine structure Fuel cell industry Fuel cells Fuel technology Heat resistance High temperature Hydrogen Hydrogen as fuel Hydrogen fuels ion-conducting Membranes membrane–electrode assembly nanodiamonds Nanostructure Neutron scattering Performance enhancement Polymers Potentiometric analysis proton exchange membrane Protons Renewable resources Scanning electron microscopy small-angle neutron scattering Thermogravimetric analysis Ultrastructure Water-power |
title | New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Generation%20of%20Compositional%20Aquivion%C2%AE-Type%20Membranes%20with%20Nanodiamonds%20for%20Hydrogen%20Fuel%20Cells:%20Design%20and%20Performance&rft.jtitle=Membranes%20(Basel)&rft.au=Primachenko,%20Oleg%20N.&rft.date=2022-08-24&rft.volume=12&rft.issue=9&rft.spage=827&rft.pages=827-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes12090827&rft_dat=%3Cgale_doaj_%3EA745884634%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716550832&rft_id=info:pmid/36135846&rft_galeid=A745884634&rfr_iscdi=true |