Loading…

New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance

Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the f...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) 2022-08, Vol.12 (9), p.827
Main Authors: Primachenko, Oleg N., Kulvelis, Yuri V., Odinokov, Alexei S., Glebova, Nadezhda V., Krasnova, Anna O., Antokolskiy, Lev A., Nechitailov, Andrey A., Shvidchenko, Alexander V., Gofman, Iosif V., Marinenko, Elena A., Yevlampieva, Natalia P., Lebedev, Vasily T., Kuklin, Alexander I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53
cites cdi_FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53
container_end_page
container_issue 9
container_start_page 827
container_title Membranes (Basel)
container_volume 12
creator Primachenko, Oleg N.
Kulvelis, Yuri V.
Odinokov, Alexei S.
Glebova, Nadezhda V.
Krasnova, Anna O.
Antokolskiy, Lev A.
Nechitailov, Andrey A.
Shvidchenko, Alexander V.
Gofman, Iosif V.
Marinenko, Elena A.
Yevlampieva, Natalia P.
Lebedev, Vasily T.
Kuklin, Alexander I.
description Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0–5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4–5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane–electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22–120 °C) compared to pure membranes without additives.
doi_str_mv 10.3390/membranes12090827
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2ebfcfda6594f999e0f6c751e4dd262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745884634</galeid><doaj_id>oai_doaj_org_article_e2ebfcfda6594f999e0f6c751e4dd262</doaj_id><sourcerecordid>A745884634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53</originalsourceid><addsrcrecordid>eNplUs1uEzEQXiEQrUIfgJslLlxSvPZ6veaAFKX0RyqFQzlbE3ucOtq1U3u3VcU78RA8GQ4piIJ98Hj8fd-MZ6aqXtf0mHNF3w04rBIEzDWjinZMPqsOGZVyTrkUz_-yD6qjnDe0rJaKltOX1QFvay66pj2svl3hPTnDgAlGHwOJjizjsI3Z767Qk8Xt5O-K-eP7_Pphi-TT77Dk3o835ApCtB6GGGwmLiZy_mBTXGMgpxP2ZIl9n9-TE8x-HQgES75gKrABgsFX1QsHfcajx3NWfT39eL08n19-PrtYLi7npuFqnLeMWymUqtXKdK1xyEA1BrhF6qRbWRSMIqO1USA6xwE4Z7KjBlhtC1XwWXWx17URNnqb_ADpQUfw-pcjprWGNHrTo0aGK2echVaoximlSozWSFFjYy0rmcyqD3ut7bQa0BoMY4L-iejTl-Bv9DreaSVo0zBVBN4-CqR4O2Ee9eCzKWUqNY1T1kzWrWpYS2WBvvkHuolTKk3Zo4SgHd9ldLxHraF8wAcXS1xTtsXBmxjQ-eJfyEZ0peO8KYR6TzAp5pzQ_cm-pno3Wvq_0eI_AbAqxN8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716550832</pqid></control><display><type>article</type><title>New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Primachenko, Oleg N. ; Kulvelis, Yuri V. ; Odinokov, Alexei S. ; Glebova, Nadezhda V. ; Krasnova, Anna O. ; Antokolskiy, Lev A. ; Nechitailov, Andrey A. ; Shvidchenko, Alexander V. ; Gofman, Iosif V. ; Marinenko, Elena A. ; Yevlampieva, Natalia P. ; Lebedev, Vasily T. ; Kuklin, Alexander I.</creator><creatorcontrib>Primachenko, Oleg N. ; Kulvelis, Yuri V. ; Odinokov, Alexei S. ; Glebova, Nadezhda V. ; Krasnova, Anna O. ; Antokolskiy, Lev A. ; Nechitailov, Andrey A. ; Shvidchenko, Alexander V. ; Gofman, Iosif V. ; Marinenko, Elena A. ; Yevlampieva, Natalia P. ; Lebedev, Vasily T. ; Kuklin, Alexander I.</creatorcontrib><description>Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0–5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4–5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane–electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22–120 °C) compared to pure membranes without additives.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes12090827</identifier><identifier>PMID: 36135846</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Additives ; Alternative energy sources ; Aquivion ; Copolymers ; Detonation ; Diamonds ; Electrical measurement ; Fine structure ; Fuel cell industry ; Fuel cells ; Fuel technology ; Heat resistance ; High temperature ; Hydrogen ; Hydrogen as fuel ; Hydrogen fuels ; ion-conducting ; Membranes ; membrane–electrode assembly ; nanodiamonds ; Nanostructure ; Neutron scattering ; Performance enhancement ; Polymers ; Potentiometric analysis ; proton exchange membrane ; Protons ; Renewable resources ; Scanning electron microscopy ; small-angle neutron scattering ; Thermogravimetric analysis ; Ultrastructure ; Water-power</subject><ispartof>Membranes (Basel), 2022-08, Vol.12 (9), p.827</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53</citedby><cites>FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53</cites><orcidid>0000-0003-4519-0111 ; 0000-0002-3228-3039 ; 0000-0002-1939-2660 ; 0000-0003-0277-2904 ; 0000-0002-5417-7472 ; 0000-0003-4894-0862 ; 0000-0001-6709-5559 ; 0000-0003-1637-8537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716550832/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716550832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Primachenko, Oleg N.</creatorcontrib><creatorcontrib>Kulvelis, Yuri V.</creatorcontrib><creatorcontrib>Odinokov, Alexei S.</creatorcontrib><creatorcontrib>Glebova, Nadezhda V.</creatorcontrib><creatorcontrib>Krasnova, Anna O.</creatorcontrib><creatorcontrib>Antokolskiy, Lev A.</creatorcontrib><creatorcontrib>Nechitailov, Andrey A.</creatorcontrib><creatorcontrib>Shvidchenko, Alexander V.</creatorcontrib><creatorcontrib>Gofman, Iosif V.</creatorcontrib><creatorcontrib>Marinenko, Elena A.</creatorcontrib><creatorcontrib>Yevlampieva, Natalia P.</creatorcontrib><creatorcontrib>Lebedev, Vasily T.</creatorcontrib><creatorcontrib>Kuklin, Alexander I.</creatorcontrib><title>New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance</title><title>Membranes (Basel)</title><description>Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0–5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4–5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane–electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22–120 °C) compared to pure membranes without additives.</description><subject>Acids</subject><subject>Additives</subject><subject>Alternative energy sources</subject><subject>Aquivion</subject><subject>Copolymers</subject><subject>Detonation</subject><subject>Diamonds</subject><subject>Electrical measurement</subject><subject>Fine structure</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Hydrogen as fuel</subject><subject>Hydrogen fuels</subject><subject>ion-conducting</subject><subject>Membranes</subject><subject>membrane–electrode assembly</subject><subject>nanodiamonds</subject><subject>Nanostructure</subject><subject>Neutron scattering</subject><subject>Performance enhancement</subject><subject>Polymers</subject><subject>Potentiometric analysis</subject><subject>proton exchange membrane</subject><subject>Protons</subject><subject>Renewable resources</subject><subject>Scanning electron microscopy</subject><subject>small-angle neutron scattering</subject><subject>Thermogravimetric analysis</subject><subject>Ultrastructure</subject><subject>Water-power</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUs1uEzEQXiEQrUIfgJslLlxSvPZ6veaAFKX0RyqFQzlbE3ucOtq1U3u3VcU78RA8GQ4piIJ98Hj8fd-MZ6aqXtf0mHNF3w04rBIEzDWjinZMPqsOGZVyTrkUz_-yD6qjnDe0rJaKltOX1QFvay66pj2svl3hPTnDgAlGHwOJjizjsI3Z767Qk8Xt5O-K-eP7_Pphi-TT77Dk3o835ApCtB6GGGwmLiZy_mBTXGMgpxP2ZIl9n9-TE8x-HQgES75gKrABgsFX1QsHfcajx3NWfT39eL08n19-PrtYLi7npuFqnLeMWymUqtXKdK1xyEA1BrhF6qRbWRSMIqO1USA6xwE4Z7KjBlhtC1XwWXWx17URNnqb_ADpQUfw-pcjprWGNHrTo0aGK2echVaoximlSozWSFFjYy0rmcyqD3ut7bQa0BoMY4L-iejTl-Bv9DreaSVo0zBVBN4-CqR4O2Ee9eCzKWUqNY1T1kzWrWpYS2WBvvkHuolTKk3Zo4SgHd9ldLxHraF8wAcXS1xTtsXBmxjQ-eJfyEZ0peO8KYR6TzAp5pzQ_cm-pno3Wvq_0eI_AbAqxN8</recordid><startdate>20220824</startdate><enddate>20220824</enddate><creator>Primachenko, Oleg N.</creator><creator>Kulvelis, Yuri V.</creator><creator>Odinokov, Alexei S.</creator><creator>Glebova, Nadezhda V.</creator><creator>Krasnova, Anna O.</creator><creator>Antokolskiy, Lev A.</creator><creator>Nechitailov, Andrey A.</creator><creator>Shvidchenko, Alexander V.</creator><creator>Gofman, Iosif V.</creator><creator>Marinenko, Elena A.</creator><creator>Yevlampieva, Natalia P.</creator><creator>Lebedev, Vasily T.</creator><creator>Kuklin, Alexander I.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4519-0111</orcidid><orcidid>https://orcid.org/0000-0002-3228-3039</orcidid><orcidid>https://orcid.org/0000-0002-1939-2660</orcidid><orcidid>https://orcid.org/0000-0003-0277-2904</orcidid><orcidid>https://orcid.org/0000-0002-5417-7472</orcidid><orcidid>https://orcid.org/0000-0003-4894-0862</orcidid><orcidid>https://orcid.org/0000-0001-6709-5559</orcidid><orcidid>https://orcid.org/0000-0003-1637-8537</orcidid></search><sort><creationdate>20220824</creationdate><title>New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance</title><author>Primachenko, Oleg N. ; Kulvelis, Yuri V. ; Odinokov, Alexei S. ; Glebova, Nadezhda V. ; Krasnova, Anna O. ; Antokolskiy, Lev A. ; Nechitailov, Andrey A. ; Shvidchenko, Alexander V. ; Gofman, Iosif V. ; Marinenko, Elena A. ; Yevlampieva, Natalia P. ; Lebedev, Vasily T. ; Kuklin, Alexander I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Additives</topic><topic>Alternative energy sources</topic><topic>Aquivion</topic><topic>Copolymers</topic><topic>Detonation</topic><topic>Diamonds</topic><topic>Electrical measurement</topic><topic>Fine structure</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Hydrogen as fuel</topic><topic>Hydrogen fuels</topic><topic>ion-conducting</topic><topic>Membranes</topic><topic>membrane–electrode assembly</topic><topic>nanodiamonds</topic><topic>Nanostructure</topic><topic>Neutron scattering</topic><topic>Performance enhancement</topic><topic>Polymers</topic><topic>Potentiometric analysis</topic><topic>proton exchange membrane</topic><topic>Protons</topic><topic>Renewable resources</topic><topic>Scanning electron microscopy</topic><topic>small-angle neutron scattering</topic><topic>Thermogravimetric analysis</topic><topic>Ultrastructure</topic><topic>Water-power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Primachenko, Oleg N.</creatorcontrib><creatorcontrib>Kulvelis, Yuri V.</creatorcontrib><creatorcontrib>Odinokov, Alexei S.</creatorcontrib><creatorcontrib>Glebova, Nadezhda V.</creatorcontrib><creatorcontrib>Krasnova, Anna O.</creatorcontrib><creatorcontrib>Antokolskiy, Lev A.</creatorcontrib><creatorcontrib>Nechitailov, Andrey A.</creatorcontrib><creatorcontrib>Shvidchenko, Alexander V.</creatorcontrib><creatorcontrib>Gofman, Iosif V.</creatorcontrib><creatorcontrib>Marinenko, Elena A.</creatorcontrib><creatorcontrib>Yevlampieva, Natalia P.</creatorcontrib><creatorcontrib>Lebedev, Vasily T.</creatorcontrib><creatorcontrib>Kuklin, Alexander I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Primachenko, Oleg N.</au><au>Kulvelis, Yuri V.</au><au>Odinokov, Alexei S.</au><au>Glebova, Nadezhda V.</au><au>Krasnova, Anna O.</au><au>Antokolskiy, Lev A.</au><au>Nechitailov, Andrey A.</au><au>Shvidchenko, Alexander V.</au><au>Gofman, Iosif V.</au><au>Marinenko, Elena A.</au><au>Yevlampieva, Natalia P.</au><au>Lebedev, Vasily T.</au><au>Kuklin, Alexander I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance</atitle><jtitle>Membranes (Basel)</jtitle><date>2022-08-24</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>827</spage><pages>827-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0–5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4–5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane–electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22–120 °C) compared to pure membranes without additives.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36135846</pmid><doi>10.3390/membranes12090827</doi><orcidid>https://orcid.org/0000-0003-4519-0111</orcidid><orcidid>https://orcid.org/0000-0002-3228-3039</orcidid><orcidid>https://orcid.org/0000-0002-1939-2660</orcidid><orcidid>https://orcid.org/0000-0003-0277-2904</orcidid><orcidid>https://orcid.org/0000-0002-5417-7472</orcidid><orcidid>https://orcid.org/0000-0003-4894-0862</orcidid><orcidid>https://orcid.org/0000-0001-6709-5559</orcidid><orcidid>https://orcid.org/0000-0003-1637-8537</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0375
ispartof Membranes (Basel), 2022-08, Vol.12 (9), p.827
issn 2077-0375
2077-0375
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e2ebfcfda6594f999e0f6c751e4dd262
source NCBI_PubMed Central(免费); Publicly Available Content Database
subjects Acids
Additives
Alternative energy sources
Aquivion
Copolymers
Detonation
Diamonds
Electrical measurement
Fine structure
Fuel cell industry
Fuel cells
Fuel technology
Heat resistance
High temperature
Hydrogen
Hydrogen as fuel
Hydrogen fuels
ion-conducting
Membranes
membrane–electrode assembly
nanodiamonds
Nanostructure
Neutron scattering
Performance enhancement
Polymers
Potentiometric analysis
proton exchange membrane
Protons
Renewable resources
Scanning electron microscopy
small-angle neutron scattering
Thermogravimetric analysis
Ultrastructure
Water-power
title New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Generation%20of%20Compositional%20Aquivion%C2%AE-Type%20Membranes%20with%20Nanodiamonds%20for%20Hydrogen%20Fuel%20Cells:%20Design%20and%20Performance&rft.jtitle=Membranes%20(Basel)&rft.au=Primachenko,%20Oleg%20N.&rft.date=2022-08-24&rft.volume=12&rft.issue=9&rft.spage=827&rft.pages=827-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes12090827&rft_dat=%3Cgale_doaj_%3EA745884634%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-623d759919bc86cfe2a94ca3de0f7fbde520e201c9a58f3aa332780ca21d23d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716550832&rft_id=info:pmid/36135846&rft_galeid=A745884634&rfr_iscdi=true