Loading…

Neural population dynamics in motor cortex are different for reach and grasp

Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the pres...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2020-11, Vol.9
Main Authors: Suresh, Aneesha K, Goodman, James M, Okorokova, Elizaveta V, Kaufman, Matthew, Hatsopoulos, Nicholas G, Bensmaia, Sliman J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53
cites cdi_FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 9
creator Suresh, Aneesha K
Goodman, James M
Okorokova, Elizaveta V
Kaufman, Matthew
Hatsopoulos, Nicholas G
Bensmaia, Sliman J
description Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control.
doi_str_mv 10.7554/eLife.58848
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2ec6358118f46c085c847284137dc7d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642799188</galeid><doaj_id>oai_doaj_org_article_e2ec6358118f46c085c847284137dc7d</doaj_id><sourcerecordid>A642799188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53</originalsourceid><addsrcrecordid>eNptkttrFDEUhwdRbKl98l0Cviiya-6XF6EULwuLghfwLaSZk2nK7GRMZsT-92Z3a-mAyUOSc77zI-fSNM8JXish-FvYxgBroTXXj5pTigVeYc1_Pn5wP2nOS7nBdSmuNTFPmxPG6P4lTpvtZ5iz69GYxrl3U0wDam8Ht4u-oDigXZpSRj7lCf4glwG1MQTIMEwoVEcG56-RG1rUZVfGZ82T4PoC53fnWfPjw_vvl59W2y8fN5cX25UXBk8rQ3BrOJXecCMoC55J4QyRzGGsPdRUhNKU-CtFsdFCKoWlV4JpIZiTINhZsznqtsnd2DHHncu3NrloD4aUO-vyFH0PFih4yYQmRAcuPdbCa66o5oSp1qu2ar07ao3z1Q5aX1Or9ViILj1DvLZd-m2V1JphXQVe3Qnk9GuGMtldLB763g2Q5mIpl4QZLSmt6Msj2rn6tTiEVBX9HrcXklNlDNF7wfV_qLpbqG1JA4RY7YuA14uAytR2TZ2bS7Gbb1-X7Jsj63MqJUO4z5Rgu58oe5goe5ioSr94WJx79t_8sL9AE8MY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461398622</pqid></control><display><type>article</type><title>Neural population dynamics in motor cortex are different for reach and grasp</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Suresh, Aneesha K ; Goodman, James M ; Okorokova, Elizaveta V ; Kaufman, Matthew ; Hatsopoulos, Nicholas G ; Bensmaia, Sliman J</creator><creatorcontrib>Suresh, Aneesha K ; Goodman, James M ; Okorokova, Elizaveta V ; Kaufman, Matthew ; Hatsopoulos, Nicholas G ; Bensmaia, Sliman J</creatorcontrib><description>Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.58848</identifier><identifier>PMID: 33200745</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Animal behavior ; Animals ; Brain Mapping ; hand ; Hand Strength - physiology ; Macaca mulatta ; motor control ; Motor Cortex - cytology ; Motor Cortex - physiology ; movement ; Movement - physiology ; Neurons ; Neurons - physiology ; Neurophysiology ; Neuroscience ; Population biology ; Psychomotor Performance - physiology ; rhesus macaque ; Short Report</subject><ispartof>eLife, 2020-11, Vol.9</ispartof><rights>2020, Suresh et al.</rights><rights>COPYRIGHT 2020 eLife Science Publications, Ltd.</rights><rights>2020, Suresh et al 2020 Suresh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53</citedby><cites>FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53</cites><orcidid>0000-0002-2719-2706 ; 0000-0003-4039-9135 ; 0000-0002-1014-9541 ; 0000-0001-6055-0600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688308/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688308/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33200745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suresh, Aneesha K</creatorcontrib><creatorcontrib>Goodman, James M</creatorcontrib><creatorcontrib>Okorokova, Elizaveta V</creatorcontrib><creatorcontrib>Kaufman, Matthew</creatorcontrib><creatorcontrib>Hatsopoulos, Nicholas G</creatorcontrib><creatorcontrib>Bensmaia, Sliman J</creatorcontrib><title>Neural population dynamics in motor cortex are different for reach and grasp</title><title>eLife</title><addtitle>Elife</addtitle><description>Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Brain Mapping</subject><subject>hand</subject><subject>Hand Strength - physiology</subject><subject>Macaca mulatta</subject><subject>motor control</subject><subject>Motor Cortex - cytology</subject><subject>Motor Cortex - physiology</subject><subject>movement</subject><subject>Movement - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurophysiology</subject><subject>Neuroscience</subject><subject>Population biology</subject><subject>Psychomotor Performance - physiology</subject><subject>rhesus macaque</subject><subject>Short Report</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkttrFDEUhwdRbKl98l0Cviiya-6XF6EULwuLghfwLaSZk2nK7GRMZsT-92Z3a-mAyUOSc77zI-fSNM8JXish-FvYxgBroTXXj5pTigVeYc1_Pn5wP2nOS7nBdSmuNTFPmxPG6P4lTpvtZ5iz69GYxrl3U0wDam8Ht4u-oDigXZpSRj7lCf4glwG1MQTIMEwoVEcG56-RG1rUZVfGZ82T4PoC53fnWfPjw_vvl59W2y8fN5cX25UXBk8rQ3BrOJXecCMoC55J4QyRzGGsPdRUhNKU-CtFsdFCKoWlV4JpIZiTINhZsznqtsnd2DHHncu3NrloD4aUO-vyFH0PFih4yYQmRAcuPdbCa66o5oSp1qu2ar07ao3z1Q5aX1Or9ViILj1DvLZd-m2V1JphXQVe3Qnk9GuGMtldLB763g2Q5mIpl4QZLSmt6Msj2rn6tTiEVBX9HrcXklNlDNF7wfV_qLpbqG1JA4RY7YuA14uAytR2TZ2bS7Gbb1-X7Jsj63MqJUO4z5Rgu58oe5goe5ioSr94WJx79t_8sL9AE8MY</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Suresh, Aneesha K</creator><creator>Goodman, James M</creator><creator>Okorokova, Elizaveta V</creator><creator>Kaufman, Matthew</creator><creator>Hatsopoulos, Nicholas G</creator><creator>Bensmaia, Sliman J</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2719-2706</orcidid><orcidid>https://orcid.org/0000-0003-4039-9135</orcidid><orcidid>https://orcid.org/0000-0002-1014-9541</orcidid><orcidid>https://orcid.org/0000-0001-6055-0600</orcidid></search><sort><creationdate>20201117</creationdate><title>Neural population dynamics in motor cortex are different for reach and grasp</title><author>Suresh, Aneesha K ; Goodman, James M ; Okorokova, Elizaveta V ; Kaufman, Matthew ; Hatsopoulos, Nicholas G ; Bensmaia, Sliman J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Brain Mapping</topic><topic>hand</topic><topic>Hand Strength - physiology</topic><topic>Macaca mulatta</topic><topic>motor control</topic><topic>Motor Cortex - cytology</topic><topic>Motor Cortex - physiology</topic><topic>movement</topic><topic>Movement - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurophysiology</topic><topic>Neuroscience</topic><topic>Population biology</topic><topic>Psychomotor Performance - physiology</topic><topic>rhesus macaque</topic><topic>Short Report</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suresh, Aneesha K</creatorcontrib><creatorcontrib>Goodman, James M</creatorcontrib><creatorcontrib>Okorokova, Elizaveta V</creatorcontrib><creatorcontrib>Kaufman, Matthew</creatorcontrib><creatorcontrib>Hatsopoulos, Nicholas G</creatorcontrib><creatorcontrib>Bensmaia, Sliman J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suresh, Aneesha K</au><au>Goodman, James M</au><au>Okorokova, Elizaveta V</au><au>Kaufman, Matthew</au><au>Hatsopoulos, Nicholas G</au><au>Bensmaia, Sliman J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural population dynamics in motor cortex are different for reach and grasp</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>9</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>33200745</pmid><doi>10.7554/eLife.58848</doi><orcidid>https://orcid.org/0000-0002-2719-2706</orcidid><orcidid>https://orcid.org/0000-0003-4039-9135</orcidid><orcidid>https://orcid.org/0000-0002-1014-9541</orcidid><orcidid>https://orcid.org/0000-0001-6055-0600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2020-11, Vol.9
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e2ec6358118f46c085c847284137dc7d
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access)
subjects Animal behavior
Animals
Brain Mapping
hand
Hand Strength - physiology
Macaca mulatta
motor control
Motor Cortex - cytology
Motor Cortex - physiology
movement
Movement - physiology
Neurons
Neurons - physiology
Neurophysiology
Neuroscience
Population biology
Psychomotor Performance - physiology
rhesus macaque
Short Report
title Neural population dynamics in motor cortex are different for reach and grasp
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20population%20dynamics%20in%20motor%20cortex%20are%20different%20for%20reach%20and%20grasp&rft.jtitle=eLife&rft.au=Suresh,%20Aneesha%20K&rft.date=2020-11-17&rft.volume=9&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.58848&rft_dat=%3Cgale_doaj_%3EA642799188%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2461398622&rft_id=info:pmid/33200745&rft_galeid=A642799188&rfr_iscdi=true