Loading…
Neural population dynamics in motor cortex are different for reach and grasp
Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the pres...
Saved in:
Published in: | eLife 2020-11, Vol.9 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 9 |
creator | Suresh, Aneesha K Goodman, James M Okorokova, Elizaveta V Kaufman, Matthew Hatsopoulos, Nicholas G Bensmaia, Sliman J |
description | Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control. |
doi_str_mv | 10.7554/eLife.58848 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2ec6358118f46c085c847284137dc7d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642799188</galeid><doaj_id>oai_doaj_org_article_e2ec6358118f46c085c847284137dc7d</doaj_id><sourcerecordid>A642799188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53</originalsourceid><addsrcrecordid>eNptkttrFDEUhwdRbKl98l0Cviiya-6XF6EULwuLghfwLaSZk2nK7GRMZsT-92Z3a-mAyUOSc77zI-fSNM8JXish-FvYxgBroTXXj5pTigVeYc1_Pn5wP2nOS7nBdSmuNTFPmxPG6P4lTpvtZ5iz69GYxrl3U0wDam8Ht4u-oDigXZpSRj7lCf4glwG1MQTIMEwoVEcG56-RG1rUZVfGZ82T4PoC53fnWfPjw_vvl59W2y8fN5cX25UXBk8rQ3BrOJXecCMoC55J4QyRzGGsPdRUhNKU-CtFsdFCKoWlV4JpIZiTINhZsznqtsnd2DHHncu3NrloD4aUO-vyFH0PFih4yYQmRAcuPdbCa66o5oSp1qu2ar07ao3z1Q5aX1Or9ViILj1DvLZd-m2V1JphXQVe3Qnk9GuGMtldLB763g2Q5mIpl4QZLSmt6Msj2rn6tTiEVBX9HrcXklNlDNF7wfV_qLpbqG1JA4RY7YuA14uAytR2TZ2bS7Gbb1-X7Jsj63MqJUO4z5Rgu58oe5goe5ioSr94WJx79t_8sL9AE8MY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461398622</pqid></control><display><type>article</type><title>Neural population dynamics in motor cortex are different for reach and grasp</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Suresh, Aneesha K ; Goodman, James M ; Okorokova, Elizaveta V ; Kaufman, Matthew ; Hatsopoulos, Nicholas G ; Bensmaia, Sliman J</creator><creatorcontrib>Suresh, Aneesha K ; Goodman, James M ; Okorokova, Elizaveta V ; Kaufman, Matthew ; Hatsopoulos, Nicholas G ; Bensmaia, Sliman J</creatorcontrib><description>Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.58848</identifier><identifier>PMID: 33200745</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Animal behavior ; Animals ; Brain Mapping ; hand ; Hand Strength - physiology ; Macaca mulatta ; motor control ; Motor Cortex - cytology ; Motor Cortex - physiology ; movement ; Movement - physiology ; Neurons ; Neurons - physiology ; Neurophysiology ; Neuroscience ; Population biology ; Psychomotor Performance - physiology ; rhesus macaque ; Short Report</subject><ispartof>eLife, 2020-11, Vol.9</ispartof><rights>2020, Suresh et al.</rights><rights>COPYRIGHT 2020 eLife Science Publications, Ltd.</rights><rights>2020, Suresh et al 2020 Suresh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53</citedby><cites>FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53</cites><orcidid>0000-0002-2719-2706 ; 0000-0003-4039-9135 ; 0000-0002-1014-9541 ; 0000-0001-6055-0600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688308/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688308/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33200745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suresh, Aneesha K</creatorcontrib><creatorcontrib>Goodman, James M</creatorcontrib><creatorcontrib>Okorokova, Elizaveta V</creatorcontrib><creatorcontrib>Kaufman, Matthew</creatorcontrib><creatorcontrib>Hatsopoulos, Nicholas G</creatorcontrib><creatorcontrib>Bensmaia, Sliman J</creatorcontrib><title>Neural population dynamics in motor cortex are different for reach and grasp</title><title>eLife</title><addtitle>Elife</addtitle><description>Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Brain Mapping</subject><subject>hand</subject><subject>Hand Strength - physiology</subject><subject>Macaca mulatta</subject><subject>motor control</subject><subject>Motor Cortex - cytology</subject><subject>Motor Cortex - physiology</subject><subject>movement</subject><subject>Movement - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurophysiology</subject><subject>Neuroscience</subject><subject>Population biology</subject><subject>Psychomotor Performance - physiology</subject><subject>rhesus macaque</subject><subject>Short Report</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkttrFDEUhwdRbKl98l0Cviiya-6XF6EULwuLghfwLaSZk2nK7GRMZsT-92Z3a-mAyUOSc77zI-fSNM8JXish-FvYxgBroTXXj5pTigVeYc1_Pn5wP2nOS7nBdSmuNTFPmxPG6P4lTpvtZ5iz69GYxrl3U0wDam8Ht4u-oDigXZpSRj7lCf4glwG1MQTIMEwoVEcG56-RG1rUZVfGZ82T4PoC53fnWfPjw_vvl59W2y8fN5cX25UXBk8rQ3BrOJXecCMoC55J4QyRzGGsPdRUhNKU-CtFsdFCKoWlV4JpIZiTINhZsznqtsnd2DHHncu3NrloD4aUO-vyFH0PFih4yYQmRAcuPdbCa66o5oSp1qu2ar07ao3z1Q5aX1Or9ViILj1DvLZd-m2V1JphXQVe3Qnk9GuGMtldLB763g2Q5mIpl4QZLSmt6Msj2rn6tTiEVBX9HrcXklNlDNF7wfV_qLpbqG1JA4RY7YuA14uAytR2TZ2bS7Gbb1-X7Jsj63MqJUO4z5Rgu58oe5goe5ioSr94WJx79t_8sL9AE8MY</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Suresh, Aneesha K</creator><creator>Goodman, James M</creator><creator>Okorokova, Elizaveta V</creator><creator>Kaufman, Matthew</creator><creator>Hatsopoulos, Nicholas G</creator><creator>Bensmaia, Sliman J</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2719-2706</orcidid><orcidid>https://orcid.org/0000-0003-4039-9135</orcidid><orcidid>https://orcid.org/0000-0002-1014-9541</orcidid><orcidid>https://orcid.org/0000-0001-6055-0600</orcidid></search><sort><creationdate>20201117</creationdate><title>Neural population dynamics in motor cortex are different for reach and grasp</title><author>Suresh, Aneesha K ; Goodman, James M ; Okorokova, Elizaveta V ; Kaufman, Matthew ; Hatsopoulos, Nicholas G ; Bensmaia, Sliman J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Brain Mapping</topic><topic>hand</topic><topic>Hand Strength - physiology</topic><topic>Macaca mulatta</topic><topic>motor control</topic><topic>Motor Cortex - cytology</topic><topic>Motor Cortex - physiology</topic><topic>movement</topic><topic>Movement - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurophysiology</topic><topic>Neuroscience</topic><topic>Population biology</topic><topic>Psychomotor Performance - physiology</topic><topic>rhesus macaque</topic><topic>Short Report</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suresh, Aneesha K</creatorcontrib><creatorcontrib>Goodman, James M</creatorcontrib><creatorcontrib>Okorokova, Elizaveta V</creatorcontrib><creatorcontrib>Kaufman, Matthew</creatorcontrib><creatorcontrib>Hatsopoulos, Nicholas G</creatorcontrib><creatorcontrib>Bensmaia, Sliman J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suresh, Aneesha K</au><au>Goodman, James M</au><au>Okorokova, Elizaveta V</au><au>Kaufman, Matthew</au><au>Hatsopoulos, Nicholas G</au><au>Bensmaia, Sliman J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural population dynamics in motor cortex are different for reach and grasp</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>9</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>33200745</pmid><doi>10.7554/eLife.58848</doi><orcidid>https://orcid.org/0000-0002-2719-2706</orcidid><orcidid>https://orcid.org/0000-0003-4039-9135</orcidid><orcidid>https://orcid.org/0000-0002-1014-9541</orcidid><orcidid>https://orcid.org/0000-0001-6055-0600</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2020-11, Vol.9 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e2ec6358118f46c085c847284137dc7d |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access) |
subjects | Animal behavior Animals Brain Mapping hand Hand Strength - physiology Macaca mulatta motor control Motor Cortex - cytology Motor Cortex - physiology movement Movement - physiology Neurons Neurons - physiology Neurophysiology Neuroscience Population biology Psychomotor Performance - physiology rhesus macaque Short Report |
title | Neural population dynamics in motor cortex are different for reach and grasp |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20population%20dynamics%20in%20motor%20cortex%20are%20different%20for%20reach%20and%20grasp&rft.jtitle=eLife&rft.au=Suresh,%20Aneesha%20K&rft.date=2020-11-17&rft.volume=9&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.58848&rft_dat=%3Cgale_doaj_%3EA642799188%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-910d9426c949523fc365a9163a008ce84857821cb72098567706c7538553a6e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2461398622&rft_id=info:pmid/33200745&rft_galeid=A642799188&rfr_iscdi=true |