Loading…
Multi-Threshold Image Segmentation Based on the Improved Dragonfly Algorithm
In view of the problems that the dragonfly algorithm has, such as that it easily falls into the local optimal solution and the optimization accuracy is low, an improved Dragonfly Algorithm (IDA) is proposed and applied to Otsu multi-threshold image segmentation. Firstly, an elite-opposition-based le...
Saved in:
Published in: | Mathematics (Basel) 2024-03, Vol.12 (6), p.854 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In view of the problems that the dragonfly algorithm has, such as that it easily falls into the local optimal solution and the optimization accuracy is low, an improved Dragonfly Algorithm (IDA) is proposed and applied to Otsu multi-threshold image segmentation. Firstly, an elite-opposition-based learning optimization is utilized to enhance the diversity of the initial population of dragonflies, laying the foundation for subsequent algorithm iterations. Secondly, an enhanced sine cosine strategy is introduced to prevent the algorithm from falling into local optima, thereby improving its ability to escape from local optima. Then, an adaptive t-distribution strategy is incorporated to enhance the balance between global exploration and local search, thereby improving the convergence speed of the algorithm. To evaluate the performance of this algorithm, we use eight international benchmark functions to test the performance of the IDA algorithm and compare it with the sparrow search algorithm (SSA), sine cosine algorithm (SCA) and dragonfly algorithm (DA). The experiments show that the algorithm performs better in terms of convergence speed and accuracy. At the same time, the Otsu method is employed to determine the optimal threshold, a series of experiments are carried out on six images provided by Berkeley University, and the results are compared with the other three algorithms. From the experimental results, the peak signal-to-noise ratio index (PSNR) and structural similarity index (SSIM) based on the IDA algorithm method are better than other optimization algorithms. The experimental results indicate that the application of Otsu multi-threshold segmentation based on the IDA algorithm is potential and meaningful. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12060854 |