Loading…
In Vitro Bioaccessibility of Bioactive Compounds from Citrus Pomaces and Orange Pomace Biscuits
The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioac...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2021-06, Vol.26 (12), p.3480 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-ad34d883937288cf7e7c94ad631663706774a4062219f4ee86a60c56807303ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-ad34d883937288cf7e7c94ad631663706774a4062219f4ee86a60c56807303ef3 |
container_end_page | |
container_issue | 12 |
container_start_page | 3480 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 26 |
creator | Fernández-Fernández, Adriana Maite Dellacassa, Eduardo Nardin, Tiziana Larcher, Roberto Gámbaro, Adriana Medrano-Fernandez, Alejandra del Castillo, María Dolores |
description | The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6–11.0 mg GAE/g digest, 65.5–97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5–214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5–25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97–11.42 mg/mL and 58.04–105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims “no-added sugars” and “source of fiber”, as well as those with good sensory quality (6.9–6.7, scale 1–9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others. |
doi_str_mv | 10.3390/molecules26123480 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e2f08efb18e94f08a21213ff9d924c0f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e2f08efb18e94f08a21213ff9d924c0f</doaj_id><sourcerecordid>2548403387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ad34d883937288cf7e7c94ad631663706774a4062219f4ee86a60c56807303ef3</originalsourceid><addsrcrecordid>eNplkk2LFDEQhoMo7rr6A7wFvHgZrXx0Pi6CDn4MLKwH9Roy6cqYobszJt0L--834wzi6qmKt973oSiKkJcM3ghh4e2YBwzLgJUrxoU08IhcMslhJUDax3_1F-RZrXsAziTrnpIL0QYMOnVJ3GaiP9JcMv2Qsg8Ba03bNKT5juZ40uZ0i3Sdx0Nepr7SWPJI1y2yVPo1j75FqJ96elP8tMOz1JI1LGmuz8mT6IeKL871inz_9PHb-svq-ubzZv3-ehWkhnnleyF7Y4QVmhsTokYdrPS9EkwpoUFpLb0ExTmzUSIa5RWEThnQAgRGcUU2J26f_d4dShp9uXPZJ_dbyGXnfJlTGNAhj2AwbplBK1vrOeNMxGh7y2WAI-vdiXVYtiP2Aae5-OEB9OFkSj_dLt86w3lDyAZ4fQaU_GvBOruxnQOHwU-Yl-p4J40EIYxu1lf_WPd5KVM71dHVAWPcHoHs5Aol11ow_lmGgTu-gvvvFcQ9mySnKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545011294</pqid></control><display><type>article</type><title>In Vitro Bioaccessibility of Bioactive Compounds from Citrus Pomaces and Orange Pomace Biscuits</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central (Training)</source><creator>Fernández-Fernández, Adriana Maite ; Dellacassa, Eduardo ; Nardin, Tiziana ; Larcher, Roberto ; Gámbaro, Adriana ; Medrano-Fernandez, Alejandra ; del Castillo, María Dolores</creator><creatorcontrib>Fernández-Fernández, Adriana Maite ; Dellacassa, Eduardo ; Nardin, Tiziana ; Larcher, Roberto ; Gámbaro, Adriana ; Medrano-Fernandez, Alejandra ; del Castillo, María Dolores</creatorcontrib><description>The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6–11.0 mg GAE/g digest, 65.5–97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5–214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5–25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97–11.42 mg/mL and 58.04–105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims “no-added sugars” and “source of fiber”, as well as those with good sensory quality (6.9–6.7, scale 1–9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules26123480</identifier><identifier>PMID: 34201056</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; anti-inflammatory ; Antidiabetics ; antioxidant ; Antioxidants ; Baking ; bioaccessibility ; Bioactive compounds ; Bioavailability ; Biological activity ; Biscuits ; Butyl hydroperoxide ; By products ; Carbohydrate metabolism ; Carbohydrates ; Chemical composition ; Citrus fruits ; citrus pomaces ; Diabetes ; Diabetes mellitus ; Digestive system ; Flavonoids ; Food ; Fruits ; Functional foods & nutraceuticals ; Gastrointestinal tract ; Glucosidase ; Health promotion ; Hesperidin ; Inflammation ; Lipopolysaccharides ; Macrophages ; Mandarins ; Mimicry ; Nitric oxide ; Nutrition ; Oxidative stress ; Phenols ; Polyphenols ; Reactive oxygen species ; Risk reduction ; Sensory properties ; Sugar ; Tangeretin ; Vitamin E ; α-Amylase ; α-Glucosidase</subject><ispartof>Molecules (Basel, Switzerland), 2021-06, Vol.26 (12), p.3480</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ad34d883937288cf7e7c94ad631663706774a4062219f4ee86a60c56807303ef3</citedby><cites>FETCH-LOGICAL-c470t-ad34d883937288cf7e7c94ad631663706774a4062219f4ee86a60c56807303ef3</cites><orcidid>0000-0002-4764-4212 ; 0000-0003-4910-2318 ; 0000-0002-4784-8389 ; 0000-0001-7177-1062 ; 0000-0001-6309-5383 ; 0000-0002-5926-6239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2545011294/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2545011294?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Fernández-Fernández, Adriana Maite</creatorcontrib><creatorcontrib>Dellacassa, Eduardo</creatorcontrib><creatorcontrib>Nardin, Tiziana</creatorcontrib><creatorcontrib>Larcher, Roberto</creatorcontrib><creatorcontrib>Gámbaro, Adriana</creatorcontrib><creatorcontrib>Medrano-Fernandez, Alejandra</creatorcontrib><creatorcontrib>del Castillo, María Dolores</creatorcontrib><title>In Vitro Bioaccessibility of Bioactive Compounds from Citrus Pomaces and Orange Pomace Biscuits</title><title>Molecules (Basel, Switzerland)</title><description>The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6–11.0 mg GAE/g digest, 65.5–97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5–214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5–25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97–11.42 mg/mL and 58.04–105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims “no-added sugars” and “source of fiber”, as well as those with good sensory quality (6.9–6.7, scale 1–9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others.</description><subject>Acids</subject><subject>anti-inflammatory</subject><subject>Antidiabetics</subject><subject>antioxidant</subject><subject>Antioxidants</subject><subject>Baking</subject><subject>bioaccessibility</subject><subject>Bioactive compounds</subject><subject>Bioavailability</subject><subject>Biological activity</subject><subject>Biscuits</subject><subject>Butyl hydroperoxide</subject><subject>By products</subject><subject>Carbohydrate metabolism</subject><subject>Carbohydrates</subject><subject>Chemical composition</subject><subject>Citrus fruits</subject><subject>citrus pomaces</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Digestive system</subject><subject>Flavonoids</subject><subject>Food</subject><subject>Fruits</subject><subject>Functional foods & nutraceuticals</subject><subject>Gastrointestinal tract</subject><subject>Glucosidase</subject><subject>Health promotion</subject><subject>Hesperidin</subject><subject>Inflammation</subject><subject>Lipopolysaccharides</subject><subject>Macrophages</subject><subject>Mandarins</subject><subject>Mimicry</subject><subject>Nitric oxide</subject><subject>Nutrition</subject><subject>Oxidative stress</subject><subject>Phenols</subject><subject>Polyphenols</subject><subject>Reactive oxygen species</subject><subject>Risk reduction</subject><subject>Sensory properties</subject><subject>Sugar</subject><subject>Tangeretin</subject><subject>Vitamin E</subject><subject>α-Amylase</subject><subject>α-Glucosidase</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkk2LFDEQhoMo7rr6A7wFvHgZrXx0Pi6CDn4MLKwH9Roy6cqYobszJt0L--834wzi6qmKt973oSiKkJcM3ghh4e2YBwzLgJUrxoU08IhcMslhJUDax3_1F-RZrXsAziTrnpIL0QYMOnVJ3GaiP9JcMv2Qsg8Ba03bNKT5juZ40uZ0i3Sdx0Nepr7SWPJI1y2yVPo1j75FqJ96elP8tMOz1JI1LGmuz8mT6IeKL871inz_9PHb-svq-ubzZv3-ehWkhnnleyF7Y4QVmhsTokYdrPS9EkwpoUFpLb0ExTmzUSIa5RWEThnQAgRGcUU2J26f_d4dShp9uXPZJ_dbyGXnfJlTGNAhj2AwbplBK1vrOeNMxGh7y2WAI-vdiXVYtiP2Aae5-OEB9OFkSj_dLt86w3lDyAZ4fQaU_GvBOruxnQOHwU-Yl-p4J40EIYxu1lf_WPd5KVM71dHVAWPcHoHs5Aol11ow_lmGgTu-gvvvFcQ9mySnKQ</recordid><startdate>20210608</startdate><enddate>20210608</enddate><creator>Fernández-Fernández, Adriana Maite</creator><creator>Dellacassa, Eduardo</creator><creator>Nardin, Tiziana</creator><creator>Larcher, Roberto</creator><creator>Gámbaro, Adriana</creator><creator>Medrano-Fernandez, Alejandra</creator><creator>del Castillo, María Dolores</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4764-4212</orcidid><orcidid>https://orcid.org/0000-0003-4910-2318</orcidid><orcidid>https://orcid.org/0000-0002-4784-8389</orcidid><orcidid>https://orcid.org/0000-0001-7177-1062</orcidid><orcidid>https://orcid.org/0000-0001-6309-5383</orcidid><orcidid>https://orcid.org/0000-0002-5926-6239</orcidid></search><sort><creationdate>20210608</creationdate><title>In Vitro Bioaccessibility of Bioactive Compounds from Citrus Pomaces and Orange Pomace Biscuits</title><author>Fernández-Fernández, Adriana Maite ; Dellacassa, Eduardo ; Nardin, Tiziana ; Larcher, Roberto ; Gámbaro, Adriana ; Medrano-Fernandez, Alejandra ; del Castillo, María Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ad34d883937288cf7e7c94ad631663706774a4062219f4ee86a60c56807303ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>anti-inflammatory</topic><topic>Antidiabetics</topic><topic>antioxidant</topic><topic>Antioxidants</topic><topic>Baking</topic><topic>bioaccessibility</topic><topic>Bioactive compounds</topic><topic>Bioavailability</topic><topic>Biological activity</topic><topic>Biscuits</topic><topic>Butyl hydroperoxide</topic><topic>By products</topic><topic>Carbohydrate metabolism</topic><topic>Carbohydrates</topic><topic>Chemical composition</topic><topic>Citrus fruits</topic><topic>citrus pomaces</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Digestive system</topic><topic>Flavonoids</topic><topic>Food</topic><topic>Fruits</topic><topic>Functional foods & nutraceuticals</topic><topic>Gastrointestinal tract</topic><topic>Glucosidase</topic><topic>Health promotion</topic><topic>Hesperidin</topic><topic>Inflammation</topic><topic>Lipopolysaccharides</topic><topic>Macrophages</topic><topic>Mandarins</topic><topic>Mimicry</topic><topic>Nitric oxide</topic><topic>Nutrition</topic><topic>Oxidative stress</topic><topic>Phenols</topic><topic>Polyphenols</topic><topic>Reactive oxygen species</topic><topic>Risk reduction</topic><topic>Sensory properties</topic><topic>Sugar</topic><topic>Tangeretin</topic><topic>Vitamin E</topic><topic>α-Amylase</topic><topic>α-Glucosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Fernández, Adriana Maite</creatorcontrib><creatorcontrib>Dellacassa, Eduardo</creatorcontrib><creatorcontrib>Nardin, Tiziana</creatorcontrib><creatorcontrib>Larcher, Roberto</creatorcontrib><creatorcontrib>Gámbaro, Adriana</creatorcontrib><creatorcontrib>Medrano-Fernandez, Alejandra</creatorcontrib><creatorcontrib>del Castillo, María Dolores</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Fernández, Adriana Maite</au><au>Dellacassa, Eduardo</au><au>Nardin, Tiziana</au><au>Larcher, Roberto</au><au>Gámbaro, Adriana</au><au>Medrano-Fernandez, Alejandra</au><au>del Castillo, María Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Bioaccessibility of Bioactive Compounds from Citrus Pomaces and Orange Pomace Biscuits</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><date>2021-06-08</date><risdate>2021</risdate><volume>26</volume><issue>12</issue><spage>3480</spage><pages>3480-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6–11.0 mg GAE/g digest, 65.5–97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5–214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5–25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97–11.42 mg/mL and 58.04–105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims “no-added sugars” and “source of fiber”, as well as those with good sensory quality (6.9–6.7, scale 1–9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34201056</pmid><doi>10.3390/molecules26123480</doi><orcidid>https://orcid.org/0000-0002-4764-4212</orcidid><orcidid>https://orcid.org/0000-0003-4910-2318</orcidid><orcidid>https://orcid.org/0000-0002-4784-8389</orcidid><orcidid>https://orcid.org/0000-0001-7177-1062</orcidid><orcidid>https://orcid.org/0000-0001-6309-5383</orcidid><orcidid>https://orcid.org/0000-0002-5926-6239</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2021-06, Vol.26 (12), p.3480 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e2f08efb18e94f08a21213ff9d924c0f |
source | Publicly Available Content (ProQuest); PubMed Central (Training) |
subjects | Acids anti-inflammatory Antidiabetics antioxidant Antioxidants Baking bioaccessibility Bioactive compounds Bioavailability Biological activity Biscuits Butyl hydroperoxide By products Carbohydrate metabolism Carbohydrates Chemical composition Citrus fruits citrus pomaces Diabetes Diabetes mellitus Digestive system Flavonoids Food Fruits Functional foods & nutraceuticals Gastrointestinal tract Glucosidase Health promotion Hesperidin Inflammation Lipopolysaccharides Macrophages Mandarins Mimicry Nitric oxide Nutrition Oxidative stress Phenols Polyphenols Reactive oxygen species Risk reduction Sensory properties Sugar Tangeretin Vitamin E α-Amylase α-Glucosidase |
title | In Vitro Bioaccessibility of Bioactive Compounds from Citrus Pomaces and Orange Pomace Biscuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20Bioaccessibility%20of%20Bioactive%20Compounds%20from%20Citrus%20Pomaces%20and%20Orange%20Pomace%20Biscuits&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Fern%C3%A1ndez-Fern%C3%A1ndez,%20Adriana%20Maite&rft.date=2021-06-08&rft.volume=26&rft.issue=12&rft.spage=3480&rft.pages=3480-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules26123480&rft_dat=%3Cproquest_doaj_%3E2548403387%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-ad34d883937288cf7e7c94ad631663706774a4062219f4ee86a60c56807303ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545011294&rft_id=info:pmid/34201056&rfr_iscdi=true |