Loading…

Characterization of Quinoa Fibre-Rich Fractions Isolated via Wet-Milling and Their Application in Food

Dietary fibre intake has beneficial effects on immunonutritional health and prevents the development of chronic non-communicable diseases such as obesity and diabetes, cardiovascular disease, and cancer. Currently, dietary fibre consumption worldwide is below the WHO recommended daily intake of 25 g...

Full description

Saved in:
Bibliographic Details
Published in:Biology and life sciences forum 2023-09, Vol.25 (1), p.12
Main Authors: Andrea Alonso-Álvarez, Claudia Monika Haros
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dietary fibre intake has beneficial effects on immunonutritional health and prevents the development of chronic non-communicable diseases such as obesity and diabetes, cardiovascular disease, and cancer. Currently, dietary fibre consumption worldwide is below the WHO recommended daily intake of 25 g. An excellent source of dietary fibre is the fibre-rich fractions of quinoa, which have a high technological potential, nutritional value, and biological activity. This fraction can be isolated via wet-milling, which offers a higher yield and recovery of the main chemical components of cereals/pseudocereals with a higher purity than those obtained via dry-milling. The objective of this work was the isolation of fibre-rich fractions of Royal Bolivian quinoa (white, red, and black) obtained via wet-milling and their characterization as technofunctional ingredients in the formulation of cereal-based food products. The extraction yield of the fibre fraction and its proximal chemical composition were determined, in addition to phytic acid content; minerals such as calcium, iron, and zinc; and technofunctional properties (particle size distribution, water and oil holding capacity, and swelling capacity). All fibre fractions isolated via wet-milling could be used as food ingredients. In particular, the fibre-rich fraction of black quinoa contains the highest amount of insoluble fibre. However, from a technological point of view, red quinoa fibre could be the most suitable for inclusion in the formulation of food matrices due to its high water and oil retention capacity, as well as its swelling capacity. The incorporation of a low proportion of quinoa dietary fibre (5–10%) allows increasing the nutritional profile of cereal-based food products.
ISSN:2673-9976
DOI:10.3390/blsf2023025012