Loading…
A novel concept of an acoustic ultrasound wearable for early detection of implant failure
Mechanical failure of medical implants, especially in orthopedic poses a significant burden to the patients and healthcare system. The majority of the implant failures are diagnosed at very late stages and are of mechanical causes. This makes the diagnosis and screening of implant failure very chall...
Saved in:
Published in: | Scientific reports 2024-12, Vol.14 (1), p.31326-12, Article 31326 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2937-dcb4e97d97e77070249ce07255096cf6adeaf55a2fdce9ed182ad76b7da738303 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 31326 |
container_title | Scientific reports |
container_volume | 14 |
creator | Yazdkhasti, Amirhossein Hughes, Elizabeth Norton, Joshua S Olson, Gage L. Lam, Casey Lloyd, Sophie Yu, Miao Schwab, Joseph H. Ghaednia, Hamid |
description | Mechanical failure of medical implants, especially in orthopedic poses a significant burden to the patients and healthcare system. The majority of the implant failures are diagnosed at very late stages and are of mechanical causes. This makes the diagnosis and screening of implant failure very challenging. There have been several attempts for development of new implants and screening methods to address this issue; however, the majority of these methods focus on development of new implants or material and cannot satisfy the needs of the patients that have already been operated on. In this work we are introducing a novel screening method and investigate the feasibility of using low-intensity, low-frequency ultrasound acoustic waves for understanding of interfacial implant defects through computational simulation. In this method, we simultaneously apply and sense acoustic waves. COMSOL simulations proved the correlation between implant health condition, severity, and location of defects with measured acoustic signal. Moreover, we show that machine learning not only can detect and classify failure types, it can also assess the severity of the defects. We believe that this work can be used as a proof of concept to rationalize the development of non-invasive screening acoustic wearables for early detection of implant failure in patients with orthopedic implants. |
doi_str_mv | 10.1038/s41598-024-82743-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e32a6cc4a5b840359e340859ba54f79b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e32a6cc4a5b840359e340859ba54f79b</doaj_id><sourcerecordid>3149799026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-dcb4e97d97e77070249ce07255096cf6adeaf55a2fdce9ed182ad76b7da738303</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEvBnbJ9QVfFRqRIXOHCyJvZkycobL3ZS1H-Pd1NKywFfbHneecbveJrmJaNvGRXmXZFMWdNSLlvDtRStftKccipVywXnTx-cT5rzUra0LsWtZPZ5cyKsFtxIfdp8vyBTusFIfJo87meSBgITAZ-WMo-eLHHOUNIyBfILIUMfkQwpk3qOtyTgjH4e03RIG3f7CNNMBhjjkvFF82yAWPD8bj9rvn388PXyc3v95dPV5cV167kVug2-l2h1sBq1prr6sR6p5kpR2_mhg4AwKAV8CB4tBmY4BN31OoAWRlBx1lyt3JBg6_Z53EG-dQlGd7xIeeMgVysRHQoOnfcSVG8kFcqikNQo24OSg7Z9Zb1fWful32EtOFX38RH0cWQaf7hNunGMdYZz3VXCmztCTj8XLLPbjcVjrJ3B2lInmLTGsK5TVfr6H-k2LXmqvTqqtLWUH4B8VfmcSsk43L-GUXeYBLdOgqudc8dJcLomvXro4z7lz79XgVgFpYamDea_tf-D_Q2Usb8A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149799026</pqid></control><display><type>article</type><title>A novel concept of an acoustic ultrasound wearable for early detection of implant failure</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yazdkhasti, Amirhossein ; Hughes, Elizabeth ; Norton, Joshua S ; Olson, Gage L. ; Lam, Casey ; Lloyd, Sophie ; Yu, Miao ; Schwab, Joseph H. ; Ghaednia, Hamid</creator><creatorcontrib>Yazdkhasti, Amirhossein ; Hughes, Elizabeth ; Norton, Joshua S ; Olson, Gage L. ; Lam, Casey ; Lloyd, Sophie ; Yu, Miao ; Schwab, Joseph H. ; Ghaednia, Hamid</creatorcontrib><description>Mechanical failure of medical implants, especially in orthopedic poses a significant burden to the patients and healthcare system. The majority of the implant failures are diagnosed at very late stages and are of mechanical causes. This makes the diagnosis and screening of implant failure very challenging. There have been several attempts for development of new implants and screening methods to address this issue; however, the majority of these methods focus on development of new implants or material and cannot satisfy the needs of the patients that have already been operated on. In this work we are introducing a novel screening method and investigate the feasibility of using low-intensity, low-frequency ultrasound acoustic waves for understanding of interfacial implant defects through computational simulation. In this method, we simultaneously apply and sense acoustic waves. COMSOL simulations proved the correlation between implant health condition, severity, and location of defects with measured acoustic signal. Moreover, we show that machine learning not only can detect and classify failure types, it can also assess the severity of the defects. We believe that this work can be used as a proof of concept to rationalize the development of non-invasive screening acoustic wearables for early detection of implant failure in patients with orthopedic implants.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-82743-7</identifier><identifier>PMID: 39732847</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/443/63 ; 631/443/811 ; 639/166/985 ; 692/698/1671 ; 692/698/1671/63 ; Acoustics ; Computer Simulation ; Concept learning ; Developmental stages ; Early Diagnosis ; Failure ; Humanities and Social Sciences ; Humans ; Machine Learning ; Mechanical failure ; multidisciplinary ; Orthopedics ; Patients ; Prostheses and Implants ; Prosthesis Failure ; Science ; Science (multidisciplinary) ; Transplants & implants ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Wearable Electronic Devices</subject><ispartof>Scientific reports, 2024-12, Vol.14 (1), p.31326-12, Article 31326</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2937-dcb4e97d97e77070249ce07255096cf6adeaf55a2fdce9ed182ad76b7da738303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149799026/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149799026?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39732847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazdkhasti, Amirhossein</creatorcontrib><creatorcontrib>Hughes, Elizabeth</creatorcontrib><creatorcontrib>Norton, Joshua S</creatorcontrib><creatorcontrib>Olson, Gage L.</creatorcontrib><creatorcontrib>Lam, Casey</creatorcontrib><creatorcontrib>Lloyd, Sophie</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><creatorcontrib>Schwab, Joseph H.</creatorcontrib><creatorcontrib>Ghaednia, Hamid</creatorcontrib><title>A novel concept of an acoustic ultrasound wearable for early detection of implant failure</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Mechanical failure of medical implants, especially in orthopedic poses a significant burden to the patients and healthcare system. The majority of the implant failures are diagnosed at very late stages and are of mechanical causes. This makes the diagnosis and screening of implant failure very challenging. There have been several attempts for development of new implants and screening methods to address this issue; however, the majority of these methods focus on development of new implants or material and cannot satisfy the needs of the patients that have already been operated on. In this work we are introducing a novel screening method and investigate the feasibility of using low-intensity, low-frequency ultrasound acoustic waves for understanding of interfacial implant defects through computational simulation. In this method, we simultaneously apply and sense acoustic waves. COMSOL simulations proved the correlation between implant health condition, severity, and location of defects with measured acoustic signal. Moreover, we show that machine learning not only can detect and classify failure types, it can also assess the severity of the defects. We believe that this work can be used as a proof of concept to rationalize the development of non-invasive screening acoustic wearables for early detection of implant failure in patients with orthopedic implants.</description><subject>631/443/63</subject><subject>631/443/811</subject><subject>639/166/985</subject><subject>692/698/1671</subject><subject>692/698/1671/63</subject><subject>Acoustics</subject><subject>Computer Simulation</subject><subject>Concept learning</subject><subject>Developmental stages</subject><subject>Early Diagnosis</subject><subject>Failure</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Mechanical failure</subject><subject>multidisciplinary</subject><subject>Orthopedics</subject><subject>Patients</subject><subject>Prostheses and Implants</subject><subject>Prosthesis Failure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transplants & implants</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Wearable Electronic Devices</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEvBnbJ9QVfFRqRIXOHCyJvZkycobL3ZS1H-Pd1NKywFfbHneecbveJrmJaNvGRXmXZFMWdNSLlvDtRStftKccipVywXnTx-cT5rzUra0LsWtZPZ5cyKsFtxIfdp8vyBTusFIfJo87meSBgITAZ-WMo-eLHHOUNIyBfILIUMfkQwpk3qOtyTgjH4e03RIG3f7CNNMBhjjkvFF82yAWPD8bj9rvn388PXyc3v95dPV5cV167kVug2-l2h1sBq1prr6sR6p5kpR2_mhg4AwKAV8CB4tBmY4BN31OoAWRlBx1lyt3JBg6_Z53EG-dQlGd7xIeeMgVysRHQoOnfcSVG8kFcqikNQo24OSg7Z9Zb1fWful32EtOFX38RH0cWQaf7hNunGMdYZz3VXCmztCTj8XLLPbjcVjrJ3B2lInmLTGsK5TVfr6H-k2LXmqvTqqtLWUH4B8VfmcSsk43L-GUXeYBLdOgqudc8dJcLomvXro4z7lz79XgVgFpYamDea_tf-D_Q2Usb8A</recordid><startdate>20241228</startdate><enddate>20241228</enddate><creator>Yazdkhasti, Amirhossein</creator><creator>Hughes, Elizabeth</creator><creator>Norton, Joshua S</creator><creator>Olson, Gage L.</creator><creator>Lam, Casey</creator><creator>Lloyd, Sophie</creator><creator>Yu, Miao</creator><creator>Schwab, Joseph H.</creator><creator>Ghaednia, Hamid</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241228</creationdate><title>A novel concept of an acoustic ultrasound wearable for early detection of implant failure</title><author>Yazdkhasti, Amirhossein ; Hughes, Elizabeth ; Norton, Joshua S ; Olson, Gage L. ; Lam, Casey ; Lloyd, Sophie ; Yu, Miao ; Schwab, Joseph H. ; Ghaednia, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-dcb4e97d97e77070249ce07255096cf6adeaf55a2fdce9ed182ad76b7da738303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/443/63</topic><topic>631/443/811</topic><topic>639/166/985</topic><topic>692/698/1671</topic><topic>692/698/1671/63</topic><topic>Acoustics</topic><topic>Computer Simulation</topic><topic>Concept learning</topic><topic>Developmental stages</topic><topic>Early Diagnosis</topic><topic>Failure</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Mechanical failure</topic><topic>multidisciplinary</topic><topic>Orthopedics</topic><topic>Patients</topic><topic>Prostheses and Implants</topic><topic>Prosthesis Failure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transplants & implants</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdkhasti, Amirhossein</creatorcontrib><creatorcontrib>Hughes, Elizabeth</creatorcontrib><creatorcontrib>Norton, Joshua S</creatorcontrib><creatorcontrib>Olson, Gage L.</creatorcontrib><creatorcontrib>Lam, Casey</creatorcontrib><creatorcontrib>Lloyd, Sophie</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><creatorcontrib>Schwab, Joseph H.</creatorcontrib><creatorcontrib>Ghaednia, Hamid</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazdkhasti, Amirhossein</au><au>Hughes, Elizabeth</au><au>Norton, Joshua S</au><au>Olson, Gage L.</au><au>Lam, Casey</au><au>Lloyd, Sophie</au><au>Yu, Miao</au><au>Schwab, Joseph H.</au><au>Ghaednia, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel concept of an acoustic ultrasound wearable for early detection of implant failure</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-12-28</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>31326</spage><epage>12</epage><pages>31326-12</pages><artnum>31326</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Mechanical failure of medical implants, especially in orthopedic poses a significant burden to the patients and healthcare system. The majority of the implant failures are diagnosed at very late stages and are of mechanical causes. This makes the diagnosis and screening of implant failure very challenging. There have been several attempts for development of new implants and screening methods to address this issue; however, the majority of these methods focus on development of new implants or material and cannot satisfy the needs of the patients that have already been operated on. In this work we are introducing a novel screening method and investigate the feasibility of using low-intensity, low-frequency ultrasound acoustic waves for understanding of interfacial implant defects through computational simulation. In this method, we simultaneously apply and sense acoustic waves. COMSOL simulations proved the correlation between implant health condition, severity, and location of defects with measured acoustic signal. Moreover, we show that machine learning not only can detect and classify failure types, it can also assess the severity of the defects. We believe that this work can be used as a proof of concept to rationalize the development of non-invasive screening acoustic wearables for early detection of implant failure in patients with orthopedic implants.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39732847</pmid><doi>10.1038/s41598-024-82743-7</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-12, Vol.14 (1), p.31326-12, Article 31326 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e32a6cc4a5b840359e340859ba54f79b |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/443/63 631/443/811 639/166/985 692/698/1671 692/698/1671/63 Acoustics Computer Simulation Concept learning Developmental stages Early Diagnosis Failure Humanities and Social Sciences Humans Machine Learning Mechanical failure multidisciplinary Orthopedics Patients Prostheses and Implants Prosthesis Failure Science Science (multidisciplinary) Transplants & implants Ultrasonic imaging Ultrasonography - methods Ultrasound Wearable Electronic Devices |
title | A novel concept of an acoustic ultrasound wearable for early detection of implant failure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20concept%20of%20an%20acoustic%20ultrasound%20wearable%20for%20early%20detection%20of%20implant%20failure&rft.jtitle=Scientific%20reports&rft.au=Yazdkhasti,%20Amirhossein&rft.date=2024-12-28&rft.volume=14&rft.issue=1&rft.spage=31326&rft.epage=12&rft.pages=31326-12&rft.artnum=31326&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-82743-7&rft_dat=%3Cproquest_doaj_%3E3149799026%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2937-dcb4e97d97e77070249ce07255096cf6adeaf55a2fdce9ed182ad76b7da738303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149799026&rft_id=info:pmid/39732847&rfr_iscdi=true |