Loading…

A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor

By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for th...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-01, Vol.12 (1), p.471
Main Authors: Han, Sang Kuy, Kim, Keonwoo, Rim, Yejoon, Han, Manhyung, Lee, Youngjeon, Park, Sung-Hyun, Choi, Won Seok, Chun, Keyoung Jin, Lee, Dong-Seok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c322t-e2e29ca61eacec32c959b05d74c7eecba708f3fe92de10d7d753f0498d83d1363
container_end_page
container_issue 1
container_start_page 471
container_title Applied sciences
container_volume 12
creator Han, Sang Kuy
Kim, Keonwoo
Rim, Yejoon
Han, Manhyung
Lee, Youngjeon
Park, Sung-Hyun
Choi, Won Seok
Chun, Keyoung Jin
Lee, Dong-Seok
description By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical.
doi_str_mv 10.3390/app12010471
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e333a007a540419f97c01bc4c8c8dfbc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e333a007a540419f97c01bc4c8c8dfbc</doaj_id><sourcerecordid>2618215413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e2e29ca61eacec32c959b05d74c7eecba708f3fe92de10d7d753f0498d83d1363</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXSGQQJRT_8BIPZal_tiN18cUWhKJQkThbE3scbLRZr21nUgc-t-7aaqKuczo6b03o3lF8ZGzGyk1-4LDwAXjrFL8pLgQTE1KWXF1-m4-L65S2rCxNJcNZxfF7yk8hj111zDd5bDFTO4asHfwTNiVL-2W4AfldXDgQ4S8Jpj22L2lNkHwo7QvZ7st9rCI7UEMX2mN-zZE7GCBOVPsE7ymtl8Bwh0NeQ3zLa4IflKfQvxQnHnsEl3965fF6_dvL7ez8uHpfn47fSitFCKXJEhoixNOaGmErK71ktVOVVYR2SUq1njpSQtHnDnlVC09q3TjGum4nMjLYn70dQE3ZjjcGt9MwNb8BUJcGYy5tR0ZklIiYwrrilVce60s40tb2cY2zi_t6PXp6DXE8GtHKZtN2MXxKcmICW8ErysuR9bnI8vGkFIk_38rZ-YQl3kXl_wD0IuHCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618215413</pqid></control><display><type>article</type><title>A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor</title><source>Publicly Available Content Database</source><creator>Han, Sang Kuy ; Kim, Keonwoo ; Rim, Yejoon ; Han, Manhyung ; Lee, Youngjeon ; Park, Sung-Hyun ; Choi, Won Seok ; Chun, Keyoung Jin ; Lee, Dong-Seok</creator><creatorcontrib>Han, Sang Kuy ; Kim, Keonwoo ; Rim, Yejoon ; Han, Manhyung ; Lee, Youngjeon ; Park, Sung-Hyun ; Choi, Won Seok ; Chun, Keyoung Jin ; Lee, Dong-Seok</creatorcontrib><description>By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12010471</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Alzheimer's disease ; Automation ; Behavior ; behavioral pattern analysis ; Biomechanics ; Cages ; Cameras ; Classification ; computer-based analysis ; depth image sensor ; Human error ; Human motion ; Image analysis ; Image processing ; Infrared analysis ; Locomotion ; Markers ; Motion capture ; Nervous system ; Noise ; non-human primate study ; Observers ; Primates ; Real time ; Research methodology ; Sensors ; Software ; Three dimensional motion ; Two dimensional analysis</subject><ispartof>Applied sciences, 2022-01, Vol.12 (1), p.471</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-e2e29ca61eacec32c959b05d74c7eecba708f3fe92de10d7d753f0498d83d1363</cites><orcidid>0000-0002-7106-1615 ; 0000-0003-0269-2429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2618215413/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2618215413?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Han, Sang Kuy</creatorcontrib><creatorcontrib>Kim, Keonwoo</creatorcontrib><creatorcontrib>Rim, Yejoon</creatorcontrib><creatorcontrib>Han, Manhyung</creatorcontrib><creatorcontrib>Lee, Youngjeon</creatorcontrib><creatorcontrib>Park, Sung-Hyun</creatorcontrib><creatorcontrib>Choi, Won Seok</creatorcontrib><creatorcontrib>Chun, Keyoung Jin</creatorcontrib><creatorcontrib>Lee, Dong-Seok</creatorcontrib><title>A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor</title><title>Applied sciences</title><description>By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Automation</subject><subject>Behavior</subject><subject>behavioral pattern analysis</subject><subject>Biomechanics</subject><subject>Cages</subject><subject>Cameras</subject><subject>Classification</subject><subject>computer-based analysis</subject><subject>depth image sensor</subject><subject>Human error</subject><subject>Human motion</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Infrared analysis</subject><subject>Locomotion</subject><subject>Markers</subject><subject>Motion capture</subject><subject>Nervous system</subject><subject>Noise</subject><subject>non-human primate study</subject><subject>Observers</subject><subject>Primates</subject><subject>Real time</subject><subject>Research methodology</subject><subject>Sensors</subject><subject>Software</subject><subject>Three dimensional motion</subject><subject>Two dimensional analysis</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXSGQQJRT_8BIPZal_tiN18cUWhKJQkThbE3scbLRZr21nUgc-t-7aaqKuczo6b03o3lF8ZGzGyk1-4LDwAXjrFL8pLgQTE1KWXF1-m4-L65S2rCxNJcNZxfF7yk8hj111zDd5bDFTO4asHfwTNiVL-2W4AfldXDgQ4S8Jpj22L2lNkHwo7QvZ7st9rCI7UEMX2mN-zZE7GCBOVPsE7ymtl8Bwh0NeQ3zLa4IflKfQvxQnHnsEl3965fF6_dvL7ez8uHpfn47fSitFCKXJEhoixNOaGmErK71ktVOVVYR2SUq1njpSQtHnDnlVC09q3TjGum4nMjLYn70dQE3ZjjcGt9MwNb8BUJcGYy5tR0ZklIiYwrrilVce60s40tb2cY2zi_t6PXp6DXE8GtHKZtN2MXxKcmICW8ErysuR9bnI8vGkFIk_38rZ-YQl3kXl_wD0IuHCg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Han, Sang Kuy</creator><creator>Kim, Keonwoo</creator><creator>Rim, Yejoon</creator><creator>Han, Manhyung</creator><creator>Lee, Youngjeon</creator><creator>Park, Sung-Hyun</creator><creator>Choi, Won Seok</creator><creator>Chun, Keyoung Jin</creator><creator>Lee, Dong-Seok</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7106-1615</orcidid><orcidid>https://orcid.org/0000-0003-0269-2429</orcidid></search><sort><creationdate>20220101</creationdate><title>A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor</title><author>Han, Sang Kuy ; Kim, Keonwoo ; Rim, Yejoon ; Han, Manhyung ; Lee, Youngjeon ; Park, Sung-Hyun ; Choi, Won Seok ; Chun, Keyoung Jin ; Lee, Dong-Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e2e29ca61eacec32c959b05d74c7eecba708f3fe92de10d7d753f0498d83d1363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Automation</topic><topic>Behavior</topic><topic>behavioral pattern analysis</topic><topic>Biomechanics</topic><topic>Cages</topic><topic>Cameras</topic><topic>Classification</topic><topic>computer-based analysis</topic><topic>depth image sensor</topic><topic>Human error</topic><topic>Human motion</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Infrared analysis</topic><topic>Locomotion</topic><topic>Markers</topic><topic>Motion capture</topic><topic>Nervous system</topic><topic>Noise</topic><topic>non-human primate study</topic><topic>Observers</topic><topic>Primates</topic><topic>Real time</topic><topic>Research methodology</topic><topic>Sensors</topic><topic>Software</topic><topic>Three dimensional motion</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Sang Kuy</creatorcontrib><creatorcontrib>Kim, Keonwoo</creatorcontrib><creatorcontrib>Rim, Yejoon</creatorcontrib><creatorcontrib>Han, Manhyung</creatorcontrib><creatorcontrib>Lee, Youngjeon</creatorcontrib><creatorcontrib>Park, Sung-Hyun</creatorcontrib><creatorcontrib>Choi, Won Seok</creatorcontrib><creatorcontrib>Chun, Keyoung Jin</creatorcontrib><creatorcontrib>Lee, Dong-Seok</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Sang Kuy</au><au>Kim, Keonwoo</au><au>Rim, Yejoon</au><au>Han, Manhyung</au><au>Lee, Youngjeon</au><au>Park, Sung-Hyun</au><au>Choi, Won Seok</au><au>Chun, Keyoung Jin</au><au>Lee, Dong-Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor</atitle><jtitle>Applied sciences</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>471</spage><pages>471-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12010471</doi><orcidid>https://orcid.org/0000-0002-7106-1615</orcidid><orcidid>https://orcid.org/0000-0003-0269-2429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2022-01, Vol.12 (1), p.471
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e333a007a540419f97c01bc4c8c8dfbc
source Publicly Available Content Database
subjects Algorithms
Alzheimer's disease
Automation
Behavior
behavioral pattern analysis
Biomechanics
Cages
Cameras
Classification
computer-based analysis
depth image sensor
Human error
Human motion
Image analysis
Image processing
Infrared analysis
Locomotion
Markers
Motion capture
Nervous system
Noise
non-human primate study
Observers
Primates
Real time
Research methodology
Sensors
Software
Three dimensional motion
Two dimensional analysis
title A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel,%20Automated,%20and%20Real-Time%20Method%20for%20the%20Analysis%20of%20Non-Human%20Primate%20Behavioral%20Patterns%20Using%20a%20Depth%20Image%20Sensor&rft.jtitle=Applied%20sciences&rft.au=Han,%20Sang%20Kuy&rft.date=2022-01-01&rft.volume=12&rft.issue=1&rft.spage=471&rft.pages=471-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12010471&rft_dat=%3Cproquest_doaj_%3E2618215413%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-e2e29ca61eacec32c959b05d74c7eecba708f3fe92de10d7d753f0498d83d1363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618215413&rft_id=info:pmid/&rfr_iscdi=true