Loading…
A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor
By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for th...
Saved in:
Published in: | Applied sciences 2022-01, Vol.12 (1), p.471 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-e2e29ca61eacec32c959b05d74c7eecba708f3fe92de10d7d753f0498d83d1363 |
container_end_page | |
container_issue | 1 |
container_start_page | 471 |
container_title | Applied sciences |
container_volume | 12 |
creator | Han, Sang Kuy Kim, Keonwoo Rim, Yejoon Han, Manhyung Lee, Youngjeon Park, Sung-Hyun Choi, Won Seok Chun, Keyoung Jin Lee, Dong-Seok |
description | By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical. |
doi_str_mv | 10.3390/app12010471 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e333a007a540419f97c01bc4c8c8dfbc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e333a007a540419f97c01bc4c8c8dfbc</doaj_id><sourcerecordid>2618215413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e2e29ca61eacec32c959b05d74c7eecba708f3fe92de10d7d753f0498d83d1363</originalsourceid><addsrcrecordid>eNpNUU1PGzEQXSGQQJRT_8BIPZal_tiN18cUWhKJQkThbE3scbLRZr21nUgc-t-7aaqKuczo6b03o3lF8ZGzGyk1-4LDwAXjrFL8pLgQTE1KWXF1-m4-L65S2rCxNJcNZxfF7yk8hj111zDd5bDFTO4asHfwTNiVL-2W4AfldXDgQ4S8Jpj22L2lNkHwo7QvZ7st9rCI7UEMX2mN-zZE7GCBOVPsE7ymtl8Bwh0NeQ3zLa4IflKfQvxQnHnsEl3965fF6_dvL7ez8uHpfn47fSitFCKXJEhoixNOaGmErK71ktVOVVYR2SUq1njpSQtHnDnlVC09q3TjGum4nMjLYn70dQE3ZjjcGt9MwNb8BUJcGYy5tR0ZklIiYwrrilVce60s40tb2cY2zi_t6PXp6DXE8GtHKZtN2MXxKcmICW8ErysuR9bnI8vGkFIk_38rZ-YQl3kXl_wD0IuHCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618215413</pqid></control><display><type>article</type><title>A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor</title><source>Publicly Available Content Database</source><creator>Han, Sang Kuy ; Kim, Keonwoo ; Rim, Yejoon ; Han, Manhyung ; Lee, Youngjeon ; Park, Sung-Hyun ; Choi, Won Seok ; Chun, Keyoung Jin ; Lee, Dong-Seok</creator><creatorcontrib>Han, Sang Kuy ; Kim, Keonwoo ; Rim, Yejoon ; Han, Manhyung ; Lee, Youngjeon ; Park, Sung-Hyun ; Choi, Won Seok ; Chun, Keyoung Jin ; Lee, Dong-Seok</creatorcontrib><description>By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12010471</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Alzheimer's disease ; Automation ; Behavior ; behavioral pattern analysis ; Biomechanics ; Cages ; Cameras ; Classification ; computer-based analysis ; depth image sensor ; Human error ; Human motion ; Image analysis ; Image processing ; Infrared analysis ; Locomotion ; Markers ; Motion capture ; Nervous system ; Noise ; non-human primate study ; Observers ; Primates ; Real time ; Research methodology ; Sensors ; Software ; Three dimensional motion ; Two dimensional analysis</subject><ispartof>Applied sciences, 2022-01, Vol.12 (1), p.471</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-e2e29ca61eacec32c959b05d74c7eecba708f3fe92de10d7d753f0498d83d1363</cites><orcidid>0000-0002-7106-1615 ; 0000-0003-0269-2429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2618215413/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2618215413?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Han, Sang Kuy</creatorcontrib><creatorcontrib>Kim, Keonwoo</creatorcontrib><creatorcontrib>Rim, Yejoon</creatorcontrib><creatorcontrib>Han, Manhyung</creatorcontrib><creatorcontrib>Lee, Youngjeon</creatorcontrib><creatorcontrib>Park, Sung-Hyun</creatorcontrib><creatorcontrib>Choi, Won Seok</creatorcontrib><creatorcontrib>Chun, Keyoung Jin</creatorcontrib><creatorcontrib>Lee, Dong-Seok</creatorcontrib><title>A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor</title><title>Applied sciences</title><description>By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Automation</subject><subject>Behavior</subject><subject>behavioral pattern analysis</subject><subject>Biomechanics</subject><subject>Cages</subject><subject>Cameras</subject><subject>Classification</subject><subject>computer-based analysis</subject><subject>depth image sensor</subject><subject>Human error</subject><subject>Human motion</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Infrared analysis</subject><subject>Locomotion</subject><subject>Markers</subject><subject>Motion capture</subject><subject>Nervous system</subject><subject>Noise</subject><subject>non-human primate study</subject><subject>Observers</subject><subject>Primates</subject><subject>Real time</subject><subject>Research methodology</subject><subject>Sensors</subject><subject>Software</subject><subject>Three dimensional motion</subject><subject>Two dimensional analysis</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PGzEQXSGQQJRT_8BIPZal_tiN18cUWhKJQkThbE3scbLRZr21nUgc-t-7aaqKuczo6b03o3lF8ZGzGyk1-4LDwAXjrFL8pLgQTE1KWXF1-m4-L65S2rCxNJcNZxfF7yk8hj111zDd5bDFTO4asHfwTNiVL-2W4AfldXDgQ4S8Jpj22L2lNkHwo7QvZ7st9rCI7UEMX2mN-zZE7GCBOVPsE7ymtl8Bwh0NeQ3zLa4IflKfQvxQnHnsEl3965fF6_dvL7ez8uHpfn47fSitFCKXJEhoixNOaGmErK71ktVOVVYR2SUq1njpSQtHnDnlVC09q3TjGum4nMjLYn70dQE3ZjjcGt9MwNb8BUJcGYy5tR0ZklIiYwrrilVce60s40tb2cY2zi_t6PXp6DXE8GtHKZtN2MXxKcmICW8ErysuR9bnI8vGkFIk_38rZ-YQl3kXl_wD0IuHCg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Han, Sang Kuy</creator><creator>Kim, Keonwoo</creator><creator>Rim, Yejoon</creator><creator>Han, Manhyung</creator><creator>Lee, Youngjeon</creator><creator>Park, Sung-Hyun</creator><creator>Choi, Won Seok</creator><creator>Chun, Keyoung Jin</creator><creator>Lee, Dong-Seok</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7106-1615</orcidid><orcidid>https://orcid.org/0000-0003-0269-2429</orcidid></search><sort><creationdate>20220101</creationdate><title>A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor</title><author>Han, Sang Kuy ; Kim, Keonwoo ; Rim, Yejoon ; Han, Manhyung ; Lee, Youngjeon ; Park, Sung-Hyun ; Choi, Won Seok ; Chun, Keyoung Jin ; Lee, Dong-Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e2e29ca61eacec32c959b05d74c7eecba708f3fe92de10d7d753f0498d83d1363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Automation</topic><topic>Behavior</topic><topic>behavioral pattern analysis</topic><topic>Biomechanics</topic><topic>Cages</topic><topic>Cameras</topic><topic>Classification</topic><topic>computer-based analysis</topic><topic>depth image sensor</topic><topic>Human error</topic><topic>Human motion</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Infrared analysis</topic><topic>Locomotion</topic><topic>Markers</topic><topic>Motion capture</topic><topic>Nervous system</topic><topic>Noise</topic><topic>non-human primate study</topic><topic>Observers</topic><topic>Primates</topic><topic>Real time</topic><topic>Research methodology</topic><topic>Sensors</topic><topic>Software</topic><topic>Three dimensional motion</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Sang Kuy</creatorcontrib><creatorcontrib>Kim, Keonwoo</creatorcontrib><creatorcontrib>Rim, Yejoon</creatorcontrib><creatorcontrib>Han, Manhyung</creatorcontrib><creatorcontrib>Lee, Youngjeon</creatorcontrib><creatorcontrib>Park, Sung-Hyun</creatorcontrib><creatorcontrib>Choi, Won Seok</creatorcontrib><creatorcontrib>Chun, Keyoung Jin</creatorcontrib><creatorcontrib>Lee, Dong-Seok</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Sang Kuy</au><au>Kim, Keonwoo</au><au>Rim, Yejoon</au><au>Han, Manhyung</au><au>Lee, Youngjeon</au><au>Park, Sung-Hyun</au><au>Choi, Won Seok</au><au>Chun, Keyoung Jin</au><au>Lee, Dong-Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor</atitle><jtitle>Applied sciences</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>471</spage><pages>471-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12010471</doi><orcidid>https://orcid.org/0000-0002-7106-1615</orcidid><orcidid>https://orcid.org/0000-0003-0269-2429</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2022-01, Vol.12 (1), p.471 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e333a007a540419f97c01bc4c8c8dfbc |
source | Publicly Available Content Database |
subjects | Algorithms Alzheimer's disease Automation Behavior behavioral pattern analysis Biomechanics Cages Cameras Classification computer-based analysis depth image sensor Human error Human motion Image analysis Image processing Infrared analysis Locomotion Markers Motion capture Nervous system Noise non-human primate study Observers Primates Real time Research methodology Sensors Software Three dimensional motion Two dimensional analysis |
title | A Novel, Automated, and Real-Time Method for the Analysis of Non-Human Primate Behavioral Patterns Using a Depth Image Sensor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel,%20Automated,%20and%20Real-Time%20Method%20for%20the%20Analysis%20of%20Non-Human%20Primate%20Behavioral%20Patterns%20Using%20a%20Depth%20Image%20Sensor&rft.jtitle=Applied%20sciences&rft.au=Han,%20Sang%20Kuy&rft.date=2022-01-01&rft.volume=12&rft.issue=1&rft.spage=471&rft.pages=471-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12010471&rft_dat=%3Cproquest_doaj_%3E2618215413%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-e2e29ca61eacec32c959b05d74c7eecba708f3fe92de10d7d753f0498d83d1363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618215413&rft_id=info:pmid/&rfr_iscdi=true |