Loading…

Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra

In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) W(Γ). Additionally, we prove that all LB structures on W(Γ) possess a triangular coboundary. We also quantize W(Γ) using the Drinfeld-twist quantization technique and identif...

Full description

Saved in:
Bibliographic Details
Published in:Axioms 2025-01, Vol.14 (1), p.7
Main Authors: Yang, Yu, Wang, Xingtao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2091-421af391fc401e16b65cc2137df345cf5084a8ecc143240de764c19ecd24956a3
container_end_page
container_issue 1
container_start_page 7
container_title Axioms
container_volume 14
creator Yang, Yu
Wang, Xingtao
description In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) W(Γ). Additionally, we prove that all LB structures on W(Γ) possess a triangular coboundary. We also quantize W(Γ) using the Drinfeld-twist quantization technique and identify a group of noncommutative algebras and noncocommutative Hopf algebras.
doi_str_mv 10.3390/axioms14010007
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e336ca7523294978966bd60ff098114e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e336ca7523294978966bd60ff098114e</doaj_id><sourcerecordid>3159334674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2091-421af391fc401e16b65cc2137df345cf5084a8ecc143240de764c19ecd24956a3</originalsourceid><addsrcrecordid>eNpVkVFLwzAUhYMoOOZefQ743Jk0ado8zqFzUFBRn8NdejMyumamLeh-vdWK6NO9HA7fPZdDyCVncyE0u4Z3H_Ytl4wzxvITMklZniVcFez0z35OZm27GxxMc1FwMSGm9EhvPNRb3ESgz13sbddHbCk0FX3qoen8ETofGhocXWGDEWp_xIqWIRzoYw0NRLoatBqhocvQuBD3UNPFSLwgZw7qFmc_c0pe725flvdJ-bBaLxdlYtMhSyJTDk5o7uzwAXK1UZm1KRd55YTMrMtYIaFAa7kUqWQV5kpartFWqdSZAjEl65FbBdiZQ_R7iB8mgDffQohbA7HztkaDQigLeZaKVEudF1qpTaWYc0wXnEscWFcj6xDDW49tZ3ahj80Q3wieaSGkyuXgmo8uG0PbRnS_VzkzX52Y_52ITxWXfnM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159334674</pqid></control><display><type>article</type><title>Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra</title><source>Publicly Available Content Database</source><creator>Yang, Yu ; Wang, Xingtao</creator><creatorcontrib>Yang, Yu ; Wang, Xingtao</creatorcontrib><description>In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) W(Γ). Additionally, we prove that all LB structures on W(Γ) possess a triangular coboundary. We also quantize W(Γ) using the Drinfeld-twist quantization technique and identify a group of noncommutative algebras and noncocommutative Hopf algebras.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms14010007</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algebra ; generalized loop planar-Galilean conformal algebra ; Lie bialgebra ; quantization ; Researchers ; Symmetry ; Vector space</subject><ispartof>Axioms, 2025-01, Vol.14 (1), p.7</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2091-421af391fc401e16b65cc2137df345cf5084a8ecc143240de764c19ecd24956a3</cites><orcidid>0000-0002-7968-7188 ; 0000-0003-0230-684X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3159334674/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3159334674?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Xingtao</creatorcontrib><title>Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra</title><title>Axioms</title><description>In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) W(Γ). Additionally, we prove that all LB structures on W(Γ) possess a triangular coboundary. We also quantize W(Γ) using the Drinfeld-twist quantization technique and identify a group of noncommutative algebras and noncocommutative Hopf algebras.</description><subject>Algebra</subject><subject>generalized loop planar-Galilean conformal algebra</subject><subject>Lie bialgebra</subject><subject>quantization</subject><subject>Researchers</subject><subject>Symmetry</subject><subject>Vector space</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkVFLwzAUhYMoOOZefQ743Jk0ado8zqFzUFBRn8NdejMyumamLeh-vdWK6NO9HA7fPZdDyCVncyE0u4Z3H_Ytl4wzxvITMklZniVcFez0z35OZm27GxxMc1FwMSGm9EhvPNRb3ESgz13sbddHbCk0FX3qoen8ETofGhocXWGDEWp_xIqWIRzoYw0NRLoatBqhocvQuBD3UNPFSLwgZw7qFmc_c0pe725flvdJ-bBaLxdlYtMhSyJTDk5o7uzwAXK1UZm1KRd55YTMrMtYIaFAa7kUqWQV5kpartFWqdSZAjEl65FbBdiZQ_R7iB8mgDffQohbA7HztkaDQigLeZaKVEudF1qpTaWYc0wXnEscWFcj6xDDW49tZ3ahj80Q3wieaSGkyuXgmo8uG0PbRnS_VzkzX52Y_52ITxWXfnM</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Yang, Yu</creator><creator>Wang, Xingtao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7968-7188</orcidid><orcidid>https://orcid.org/0000-0003-0230-684X</orcidid></search><sort><creationdate>20250101</creationdate><title>Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra</title><author>Yang, Yu ; Wang, Xingtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2091-421af391fc401e16b65cc2137df345cf5084a8ecc143240de764c19ecd24956a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algebra</topic><topic>generalized loop planar-Galilean conformal algebra</topic><topic>Lie bialgebra</topic><topic>quantization</topic><topic>Researchers</topic><topic>Symmetry</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Wang, Xingtao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yu</au><au>Wang, Xingtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra</atitle><jtitle>Axioms</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>14</volume><issue>1</issue><spage>7</spage><pages>7-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) W(Γ). Additionally, we prove that all LB structures on W(Γ) possess a triangular coboundary. We also quantize W(Γ) using the Drinfeld-twist quantization technique and identify a group of noncommutative algebras and noncocommutative Hopf algebras.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms14010007</doi><orcidid>https://orcid.org/0000-0002-7968-7188</orcidid><orcidid>https://orcid.org/0000-0003-0230-684X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1680
ispartof Axioms, 2025-01, Vol.14 (1), p.7
issn 2075-1680
2075-1680
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e336ca7523294978966bd60ff098114e
source Publicly Available Content Database
subjects Algebra
generalized loop planar-Galilean conformal algebra
Lie bialgebra
quantization
Researchers
Symmetry
Vector space
title Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lie%20Bialgebra%20Structures%20and%20Quantization%20of%20Generalized%20Loop%20Planar%20Galilean%20Conformal%20Algebra&rft.jtitle=Axioms&rft.au=Yang,%20Yu&rft.date=2025-01-01&rft.volume=14&rft.issue=1&rft.spage=7&rft.pages=7-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms14010007&rft_dat=%3Cproquest_doaj_%3E3159334674%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2091-421af391fc401e16b65cc2137df345cf5084a8ecc143240de764c19ecd24956a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3159334674&rft_id=info:pmid/&rfr_iscdi=true