Loading…

All-Wheel Steering Tracking Control Method for Virtual Rail Trains with Only Interoceptive Sensors

A virtual rail train (VRT) is a multi-articulated vehicle as well as a novel public transportation system due to its low economic cost, environmental friendliness and high transit capacity. Equipped with all-wheel steering (AWS) and a tracking control method, the super long VRT can travel on urban r...

Full description

Saved in:
Bibliographic Details
Published in:World electric vehicle journal 2024-06, Vol.15 (6), p.247
Main Authors: Wang, Zhenpo, Zhang, Yi, Wang, Zhifu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A virtual rail train (VRT) is a multi-articulated vehicle as well as a novel public transportation system due to its low economic cost, environmental friendliness and high transit capacity. Equipped with all-wheel steering (AWS) and a tracking control method, the super long VRT can travel on urban roads easily. This paper proposed a tracking control approach using only interoceptive sensors with high scene adaptivity. The kinematic model was established first under reasonable assumptions when the sensor configuration was completed simultaneously. A hierarchical controller consists of a front axle controller and a rear axle controller. The former applies virtual axles theory to avoid motion interference. The latter generates a first-axle reference path with path segmentation and a data updating method to improve storage and computational efficiency. Then, a fast curvature matching rear axles control method is developed with an actuator time delay considered. Finally, the proposed approach is verified in a hardware in loop (HIL) simulation under various situations with predefined evaluation standards, which shows better tracking performance and applicability.
ISSN:2032-6653
2032-6653
DOI:10.3390/wevj15060247