Loading…

Removal of anionic surfactants by sorption onto Aminated Mesoporous Carbon

Direct and indirect releases of large quantities of surfactants to the environment may result in serious health and environmental problems. Therefore, surfactants should be removed from water before release to the environment or delivery for public use. In the present work, the removal of anionic su...

Full description

Saved in:
Bibliographic Details
Published in:Chemical Industry and Chemical Engineering Quarterly 2013, Vol.19 (3), p.347-357
Main Authors: Moradi, S.E., Khodaveisy, J., Dashti, R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Direct and indirect releases of large quantities of surfactants to the environment may result in serious health and environmental problems. Therefore, surfactants should be removed from water before release to the environment or delivery for public use. In the present work, the removal of anionic surfactants, benzene sulfonate (BS), p-toluene sulfonate (TS) and 4-octylbenzene sulfonate (OBS) from water by adsorption onto Amino modified mesoporous carbon (AMC) were studied. The AMC surface chemistry and textural properties was characterized by nitrogen adsorption, XRD and FT-IR analyses. Experiments were conducted in batch mode with the variables such as amount of contact time, solution pH, dose of adsorbent and temperature. Finally, the adsorption isotherms of anionic surfactants on mesoporous carbon adsorbents were in agreement with a Langmuir model. AMC has shown higher anionic surfactants adsorption capacity than the untreated mesoporous carbon, which can explain by strong interaction between anionic surfactant and cationic surface of adsorbent. nema
ISSN:1451-9372
2217-7434
DOI:10.2298/CICEQ120204069M