Loading…
3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography
Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is s...
Saved in:
Published in: | Frontiers in oncology 2021-05, Vol.11, p.554668-554668 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343 |
---|---|
cites | cdi_FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343 |
container_end_page | 554668 |
container_issue | |
container_start_page | 554668 |
container_title | Frontiers in oncology |
container_volume | 11 |
creator | Longo, Elena Sancey, Lucie Cedola, Alessia Barbier, Emmanuel L. Bravin, Alberto Brun, Francesco Bukreeva, Inna Fratini, Michela Massimi, Lorenzo Greving, Imke Le Duc, Geraldine Tillement, Olivier De La Rochefoucauld, Ombeline Zeitoun, Philippe |
description | Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs. |
doi_str_mv | 10.3389/fonc.2021.554668 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e34b190f5e0b4f149b90fef1ed274102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e34b190f5e0b4f149b90fef1ed274102</doaj_id><sourcerecordid>2540513805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbKm99zKXejFrkpNkkhuhbtUW1g-wQu9CksnspsxOxmS2sP_ejLOINQRyPt7zhANvVb0meAUg1bsuDm5FMSUrzpkQ8ll1TimwWjG4f_5PfFZd5vyAyxEcEwwvqzNghECZOq9auEY_RjMF06PrkKcU7GEKcUCxQ1_NEEeTpuB6n1EY0JfgPPqQzBz6yeRyS8Me0X2dzBF935W8XsdhSqWH7uI-bpMZd8dX1YvO9Nlfnt6L6uenj3frm3rz7fPt-mpTO9bAVAvbUtmwrqXgleJSALcN8U60SgnbOEE4MaCslN63VBEGsow0Bjg0vAUGF9Xtwm2jedBjCnuTjjqaoP8UYtrq0zraA7NE4Y57bFlHmLIl8R0p4IYRTAvr_cIaD3bvW-fnrfon0KedIez0Nj5qSSQHpgrg7QLY_Td2c7XRcw0DFRgz-kiK9s3psxR_HXye9D5k5_veDD4esqacYU5AYl6keJG6FHNOvvvLJljPvtCzL_TsC734An4DmCapmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540513805</pqid></control><display><type>article</type><title>3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography</title><source>Open Access: PubMed Central</source><creator>Longo, Elena ; Sancey, Lucie ; Cedola, Alessia ; Barbier, Emmanuel L. ; Bravin, Alberto ; Brun, Francesco ; Bukreeva, Inna ; Fratini, Michela ; Massimi, Lorenzo ; Greving, Imke ; Le Duc, Geraldine ; Tillement, Olivier ; De La Rochefoucauld, Ombeline ; Zeitoun, Philippe</creator><creatorcontrib>Longo, Elena ; Sancey, Lucie ; Cedola, Alessia ; Barbier, Emmanuel L. ; Bravin, Alberto ; Brun, Francesco ; Bukreeva, Inna ; Fratini, Michela ; Massimi, Lorenzo ; Greving, Imke ; Le Duc, Geraldine ; Tillement, Olivier ; De La Rochefoucauld, Ombeline ; Zeitoun, Philippe</creatorcontrib><description>Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.</description><identifier>ISSN: 2234-943X</identifier><identifier>EISSN: 2234-943X</identifier><identifier>DOI: 10.3389/fonc.2021.554668</identifier><identifier>PMID: 34113554</identifier><language>eng</language><publisher>Frontiers Media</publisher><subject>3D visualization ; Bioengineering ; brain ; Cancer ; Imaging ; Life Sciences ; melanoma metastases ; nanoparticles ; Neurons and Cognition ; Oncology ; synchrotron radiation ; X-ray phase-contrast tomography</subject><ispartof>Frontiers in oncology, 2021-05, Vol.11, p.554668-554668</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2021 Longo, Sancey, Cedola, Barbier, Bravin, Brun, Bukreeva, Fratini, Massimi, Greving, Le Duc, Tillement, De La Rochefoucauld and Zeitoun 2021 Longo, Sancey, Cedola, Barbier, Bravin, Brun, Bukreeva, Fratini, Massimi, Greving, Le Duc, Tillement, De La Rochefoucauld and Zeitoun</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343</citedby><cites>FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343</cites><orcidid>0000-0002-4952-1240 ; 0000-0001-7166-6537 ; 0000-0003-1483-4965 ; 0000-0002-9256-8853 ; 0000-0002-0084-3775 ; 0000-0001-6868-2755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185349/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185349/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03260042$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Longo, Elena</creatorcontrib><creatorcontrib>Sancey, Lucie</creatorcontrib><creatorcontrib>Cedola, Alessia</creatorcontrib><creatorcontrib>Barbier, Emmanuel L.</creatorcontrib><creatorcontrib>Bravin, Alberto</creatorcontrib><creatorcontrib>Brun, Francesco</creatorcontrib><creatorcontrib>Bukreeva, Inna</creatorcontrib><creatorcontrib>Fratini, Michela</creatorcontrib><creatorcontrib>Massimi, Lorenzo</creatorcontrib><creatorcontrib>Greving, Imke</creatorcontrib><creatorcontrib>Le Duc, Geraldine</creatorcontrib><creatorcontrib>Tillement, Olivier</creatorcontrib><creatorcontrib>De La Rochefoucauld, Ombeline</creatorcontrib><creatorcontrib>Zeitoun, Philippe</creatorcontrib><title>3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography</title><title>Frontiers in oncology</title><description>Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.</description><subject>3D visualization</subject><subject>Bioengineering</subject><subject>brain</subject><subject>Cancer</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>melanoma metastases</subject><subject>nanoparticles</subject><subject>Neurons and Cognition</subject><subject>Oncology</subject><subject>synchrotron radiation</subject><subject>X-ray phase-contrast tomography</subject><issn>2234-943X</issn><issn>2234-943X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbKm99zKXejFrkpNkkhuhbtUW1g-wQu9CksnspsxOxmS2sP_ejLOINQRyPt7zhANvVb0meAUg1bsuDm5FMSUrzpkQ8ll1TimwWjG4f_5PfFZd5vyAyxEcEwwvqzNghECZOq9auEY_RjMF06PrkKcU7GEKcUCxQ1_NEEeTpuB6n1EY0JfgPPqQzBz6yeRyS8Me0X2dzBF935W8XsdhSqWH7uI-bpMZd8dX1YvO9Nlfnt6L6uenj3frm3rz7fPt-mpTO9bAVAvbUtmwrqXgleJSALcN8U60SgnbOEE4MaCslN63VBEGsow0Bjg0vAUGF9Xtwm2jedBjCnuTjjqaoP8UYtrq0zraA7NE4Y57bFlHmLIl8R0p4IYRTAvr_cIaD3bvW-fnrfon0KedIez0Nj5qSSQHpgrg7QLY_Td2c7XRcw0DFRgz-kiK9s3psxR_HXye9D5k5_veDD4esqacYU5AYl6keJG6FHNOvvvLJljPvtCzL_TsC734An4DmCapmA</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Longo, Elena</creator><creator>Sancey, Lucie</creator><creator>Cedola, Alessia</creator><creator>Barbier, Emmanuel L.</creator><creator>Bravin, Alberto</creator><creator>Brun, Francesco</creator><creator>Bukreeva, Inna</creator><creator>Fratini, Michela</creator><creator>Massimi, Lorenzo</creator><creator>Greving, Imke</creator><creator>Le Duc, Geraldine</creator><creator>Tillement, Olivier</creator><creator>De La Rochefoucauld, Ombeline</creator><creator>Zeitoun, Philippe</creator><general>Frontiers Media</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4952-1240</orcidid><orcidid>https://orcid.org/0000-0001-7166-6537</orcidid><orcidid>https://orcid.org/0000-0003-1483-4965</orcidid><orcidid>https://orcid.org/0000-0002-9256-8853</orcidid><orcidid>https://orcid.org/0000-0002-0084-3775</orcidid><orcidid>https://orcid.org/0000-0001-6868-2755</orcidid></search><sort><creationdate>20210525</creationdate><title>3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography</title><author>Longo, Elena ; Sancey, Lucie ; Cedola, Alessia ; Barbier, Emmanuel L. ; Bravin, Alberto ; Brun, Francesco ; Bukreeva, Inna ; Fratini, Michela ; Massimi, Lorenzo ; Greving, Imke ; Le Duc, Geraldine ; Tillement, Olivier ; De La Rochefoucauld, Ombeline ; Zeitoun, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D visualization</topic><topic>Bioengineering</topic><topic>brain</topic><topic>Cancer</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>melanoma metastases</topic><topic>nanoparticles</topic><topic>Neurons and Cognition</topic><topic>Oncology</topic><topic>synchrotron radiation</topic><topic>X-ray phase-contrast tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Longo, Elena</creatorcontrib><creatorcontrib>Sancey, Lucie</creatorcontrib><creatorcontrib>Cedola, Alessia</creatorcontrib><creatorcontrib>Barbier, Emmanuel L.</creatorcontrib><creatorcontrib>Bravin, Alberto</creatorcontrib><creatorcontrib>Brun, Francesco</creatorcontrib><creatorcontrib>Bukreeva, Inna</creatorcontrib><creatorcontrib>Fratini, Michela</creatorcontrib><creatorcontrib>Massimi, Lorenzo</creatorcontrib><creatorcontrib>Greving, Imke</creatorcontrib><creatorcontrib>Le Duc, Geraldine</creatorcontrib><creatorcontrib>Tillement, Olivier</creatorcontrib><creatorcontrib>De La Rochefoucauld, Ombeline</creatorcontrib><creatorcontrib>Zeitoun, Philippe</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Longo, Elena</au><au>Sancey, Lucie</au><au>Cedola, Alessia</au><au>Barbier, Emmanuel L.</au><au>Bravin, Alberto</au><au>Brun, Francesco</au><au>Bukreeva, Inna</au><au>Fratini, Michela</au><au>Massimi, Lorenzo</au><au>Greving, Imke</au><au>Le Duc, Geraldine</au><au>Tillement, Olivier</au><au>De La Rochefoucauld, Ombeline</au><au>Zeitoun, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography</atitle><jtitle>Frontiers in oncology</jtitle><date>2021-05-25</date><risdate>2021</risdate><volume>11</volume><spage>554668</spage><epage>554668</epage><pages>554668-554668</pages><issn>2234-943X</issn><eissn>2234-943X</eissn><abstract>Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.</abstract><pub>Frontiers Media</pub><pmid>34113554</pmid><doi>10.3389/fonc.2021.554668</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4952-1240</orcidid><orcidid>https://orcid.org/0000-0001-7166-6537</orcidid><orcidid>https://orcid.org/0000-0003-1483-4965</orcidid><orcidid>https://orcid.org/0000-0002-9256-8853</orcidid><orcidid>https://orcid.org/0000-0002-0084-3775</orcidid><orcidid>https://orcid.org/0000-0001-6868-2755</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2234-943X |
ispartof | Frontiers in oncology, 2021-05, Vol.11, p.554668-554668 |
issn | 2234-943X 2234-943X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e34b190f5e0b4f149b90fef1ed274102 |
source | Open Access: PubMed Central |
subjects | 3D visualization Bioengineering brain Cancer Imaging Life Sciences melanoma metastases nanoparticles Neurons and Cognition Oncology synchrotron radiation X-ray phase-contrast tomography |
title | 3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Spatial%20Distribution%20of%20Nanoparticles%20in%20Mice%20Brain%20Metastases%20by%20X-ray%20Phase-Contrast%20Tomography&rft.jtitle=Frontiers%20in%20oncology&rft.au=Longo,%20Elena&rft.date=2021-05-25&rft.volume=11&rft.spage=554668&rft.epage=554668&rft.pages=554668-554668&rft.issn=2234-943X&rft.eissn=2234-943X&rft_id=info:doi/10.3389/fonc.2021.554668&rft_dat=%3Cproquest_doaj_%3E2540513805%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540513805&rft_id=info:pmid/34113554&rfr_iscdi=true |