Loading…

3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography

Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is s...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in oncology 2021-05, Vol.11, p.554668-554668
Main Authors: Longo, Elena, Sancey, Lucie, Cedola, Alessia, Barbier, Emmanuel L., Bravin, Alberto, Brun, Francesco, Bukreeva, Inna, Fratini, Michela, Massimi, Lorenzo, Greving, Imke, Le Duc, Geraldine, Tillement, Olivier, De La Rochefoucauld, Ombeline, Zeitoun, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343
cites cdi_FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343
container_end_page 554668
container_issue
container_start_page 554668
container_title Frontiers in oncology
container_volume 11
creator Longo, Elena
Sancey, Lucie
Cedola, Alessia
Barbier, Emmanuel L.
Bravin, Alberto
Brun, Francesco
Bukreeva, Inna
Fratini, Michela
Massimi, Lorenzo
Greving, Imke
Le Duc, Geraldine
Tillement, Olivier
De La Rochefoucauld, Ombeline
Zeitoun, Philippe
description Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.
doi_str_mv 10.3389/fonc.2021.554668
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e34b190f5e0b4f149b90fef1ed274102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e34b190f5e0b4f149b90fef1ed274102</doaj_id><sourcerecordid>2540513805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbKm99zKXejFrkpNkkhuhbtUW1g-wQu9CksnspsxOxmS2sP_ejLOINQRyPt7zhANvVb0meAUg1bsuDm5FMSUrzpkQ8ll1TimwWjG4f_5PfFZd5vyAyxEcEwwvqzNghECZOq9auEY_RjMF06PrkKcU7GEKcUCxQ1_NEEeTpuB6n1EY0JfgPPqQzBz6yeRyS8Me0X2dzBF935W8XsdhSqWH7uI-bpMZd8dX1YvO9Nlfnt6L6uenj3frm3rz7fPt-mpTO9bAVAvbUtmwrqXgleJSALcN8U60SgnbOEE4MaCslN63VBEGsow0Bjg0vAUGF9Xtwm2jedBjCnuTjjqaoP8UYtrq0zraA7NE4Y57bFlHmLIl8R0p4IYRTAvr_cIaD3bvW-fnrfon0KedIez0Nj5qSSQHpgrg7QLY_Td2c7XRcw0DFRgz-kiK9s3psxR_HXye9D5k5_veDD4esqacYU5AYl6keJG6FHNOvvvLJljPvtCzL_TsC734An4DmCapmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540513805</pqid></control><display><type>article</type><title>3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography</title><source>Open Access: PubMed Central</source><creator>Longo, Elena ; Sancey, Lucie ; Cedola, Alessia ; Barbier, Emmanuel L. ; Bravin, Alberto ; Brun, Francesco ; Bukreeva, Inna ; Fratini, Michela ; Massimi, Lorenzo ; Greving, Imke ; Le Duc, Geraldine ; Tillement, Olivier ; De La Rochefoucauld, Ombeline ; Zeitoun, Philippe</creator><creatorcontrib>Longo, Elena ; Sancey, Lucie ; Cedola, Alessia ; Barbier, Emmanuel L. ; Bravin, Alberto ; Brun, Francesco ; Bukreeva, Inna ; Fratini, Michela ; Massimi, Lorenzo ; Greving, Imke ; Le Duc, Geraldine ; Tillement, Olivier ; De La Rochefoucauld, Ombeline ; Zeitoun, Philippe</creatorcontrib><description>Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.</description><identifier>ISSN: 2234-943X</identifier><identifier>EISSN: 2234-943X</identifier><identifier>DOI: 10.3389/fonc.2021.554668</identifier><identifier>PMID: 34113554</identifier><language>eng</language><publisher>Frontiers Media</publisher><subject>3D visualization ; Bioengineering ; brain ; Cancer ; Imaging ; Life Sciences ; melanoma metastases ; nanoparticles ; Neurons and Cognition ; Oncology ; synchrotron radiation ; X-ray phase-contrast tomography</subject><ispartof>Frontiers in oncology, 2021-05, Vol.11, p.554668-554668</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2021 Longo, Sancey, Cedola, Barbier, Bravin, Brun, Bukreeva, Fratini, Massimi, Greving, Le Duc, Tillement, De La Rochefoucauld and Zeitoun 2021 Longo, Sancey, Cedola, Barbier, Bravin, Brun, Bukreeva, Fratini, Massimi, Greving, Le Duc, Tillement, De La Rochefoucauld and Zeitoun</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343</citedby><cites>FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343</cites><orcidid>0000-0002-4952-1240 ; 0000-0001-7166-6537 ; 0000-0003-1483-4965 ; 0000-0002-9256-8853 ; 0000-0002-0084-3775 ; 0000-0001-6868-2755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185349/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185349/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03260042$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Longo, Elena</creatorcontrib><creatorcontrib>Sancey, Lucie</creatorcontrib><creatorcontrib>Cedola, Alessia</creatorcontrib><creatorcontrib>Barbier, Emmanuel L.</creatorcontrib><creatorcontrib>Bravin, Alberto</creatorcontrib><creatorcontrib>Brun, Francesco</creatorcontrib><creatorcontrib>Bukreeva, Inna</creatorcontrib><creatorcontrib>Fratini, Michela</creatorcontrib><creatorcontrib>Massimi, Lorenzo</creatorcontrib><creatorcontrib>Greving, Imke</creatorcontrib><creatorcontrib>Le Duc, Geraldine</creatorcontrib><creatorcontrib>Tillement, Olivier</creatorcontrib><creatorcontrib>De La Rochefoucauld, Ombeline</creatorcontrib><creatorcontrib>Zeitoun, Philippe</creatorcontrib><title>3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography</title><title>Frontiers in oncology</title><description>Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.</description><subject>3D visualization</subject><subject>Bioengineering</subject><subject>brain</subject><subject>Cancer</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>melanoma metastases</subject><subject>nanoparticles</subject><subject>Neurons and Cognition</subject><subject>Oncology</subject><subject>synchrotron radiation</subject><subject>X-ray phase-contrast tomography</subject><issn>2234-943X</issn><issn>2234-943X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbKm99zKXejFrkpNkkhuhbtUW1g-wQu9CksnspsxOxmS2sP_ejLOINQRyPt7zhANvVb0meAUg1bsuDm5FMSUrzpkQ8ll1TimwWjG4f_5PfFZd5vyAyxEcEwwvqzNghECZOq9auEY_RjMF06PrkKcU7GEKcUCxQ1_NEEeTpuB6n1EY0JfgPPqQzBz6yeRyS8Me0X2dzBF935W8XsdhSqWH7uI-bpMZd8dX1YvO9Nlfnt6L6uenj3frm3rz7fPt-mpTO9bAVAvbUtmwrqXgleJSALcN8U60SgnbOEE4MaCslN63VBEGsow0Bjg0vAUGF9Xtwm2jedBjCnuTjjqaoP8UYtrq0zraA7NE4Y57bFlHmLIl8R0p4IYRTAvr_cIaD3bvW-fnrfon0KedIez0Nj5qSSQHpgrg7QLY_Td2c7XRcw0DFRgz-kiK9s3psxR_HXye9D5k5_veDD4esqacYU5AYl6keJG6FHNOvvvLJljPvtCzL_TsC734An4DmCapmA</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Longo, Elena</creator><creator>Sancey, Lucie</creator><creator>Cedola, Alessia</creator><creator>Barbier, Emmanuel L.</creator><creator>Bravin, Alberto</creator><creator>Brun, Francesco</creator><creator>Bukreeva, Inna</creator><creator>Fratini, Michela</creator><creator>Massimi, Lorenzo</creator><creator>Greving, Imke</creator><creator>Le Duc, Geraldine</creator><creator>Tillement, Olivier</creator><creator>De La Rochefoucauld, Ombeline</creator><creator>Zeitoun, Philippe</creator><general>Frontiers Media</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4952-1240</orcidid><orcidid>https://orcid.org/0000-0001-7166-6537</orcidid><orcidid>https://orcid.org/0000-0003-1483-4965</orcidid><orcidid>https://orcid.org/0000-0002-9256-8853</orcidid><orcidid>https://orcid.org/0000-0002-0084-3775</orcidid><orcidid>https://orcid.org/0000-0001-6868-2755</orcidid></search><sort><creationdate>20210525</creationdate><title>3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography</title><author>Longo, Elena ; Sancey, Lucie ; Cedola, Alessia ; Barbier, Emmanuel L. ; Bravin, Alberto ; Brun, Francesco ; Bukreeva, Inna ; Fratini, Michela ; Massimi, Lorenzo ; Greving, Imke ; Le Duc, Geraldine ; Tillement, Olivier ; De La Rochefoucauld, Ombeline ; Zeitoun, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D visualization</topic><topic>Bioengineering</topic><topic>brain</topic><topic>Cancer</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>melanoma metastases</topic><topic>nanoparticles</topic><topic>Neurons and Cognition</topic><topic>Oncology</topic><topic>synchrotron radiation</topic><topic>X-ray phase-contrast tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Longo, Elena</creatorcontrib><creatorcontrib>Sancey, Lucie</creatorcontrib><creatorcontrib>Cedola, Alessia</creatorcontrib><creatorcontrib>Barbier, Emmanuel L.</creatorcontrib><creatorcontrib>Bravin, Alberto</creatorcontrib><creatorcontrib>Brun, Francesco</creatorcontrib><creatorcontrib>Bukreeva, Inna</creatorcontrib><creatorcontrib>Fratini, Michela</creatorcontrib><creatorcontrib>Massimi, Lorenzo</creatorcontrib><creatorcontrib>Greving, Imke</creatorcontrib><creatorcontrib>Le Duc, Geraldine</creatorcontrib><creatorcontrib>Tillement, Olivier</creatorcontrib><creatorcontrib>De La Rochefoucauld, Ombeline</creatorcontrib><creatorcontrib>Zeitoun, Philippe</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Longo, Elena</au><au>Sancey, Lucie</au><au>Cedola, Alessia</au><au>Barbier, Emmanuel L.</au><au>Bravin, Alberto</au><au>Brun, Francesco</au><au>Bukreeva, Inna</au><au>Fratini, Michela</au><au>Massimi, Lorenzo</au><au>Greving, Imke</au><au>Le Duc, Geraldine</au><au>Tillement, Olivier</au><au>De La Rochefoucauld, Ombeline</au><au>Zeitoun, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography</atitle><jtitle>Frontiers in oncology</jtitle><date>2021-05-25</date><risdate>2021</risdate><volume>11</volume><spage>554668</spage><epage>554668</epage><pages>554668-554668</pages><issn>2234-943X</issn><eissn>2234-943X</eissn><abstract>Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.</abstract><pub>Frontiers Media</pub><pmid>34113554</pmid><doi>10.3389/fonc.2021.554668</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4952-1240</orcidid><orcidid>https://orcid.org/0000-0001-7166-6537</orcidid><orcidid>https://orcid.org/0000-0003-1483-4965</orcidid><orcidid>https://orcid.org/0000-0002-9256-8853</orcidid><orcidid>https://orcid.org/0000-0002-0084-3775</orcidid><orcidid>https://orcid.org/0000-0001-6868-2755</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2234-943X
ispartof Frontiers in oncology, 2021-05, Vol.11, p.554668-554668
issn 2234-943X
2234-943X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e34b190f5e0b4f149b90fef1ed274102
source Open Access: PubMed Central
subjects 3D visualization
Bioengineering
brain
Cancer
Imaging
Life Sciences
melanoma metastases
nanoparticles
Neurons and Cognition
Oncology
synchrotron radiation
X-ray phase-contrast tomography
title 3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Spatial%20Distribution%20of%20Nanoparticles%20in%20Mice%20Brain%20Metastases%20by%20X-ray%20Phase-Contrast%20Tomography&rft.jtitle=Frontiers%20in%20oncology&rft.au=Longo,%20Elena&rft.date=2021-05-25&rft.volume=11&rft.spage=554668&rft.epage=554668&rft.pages=554668-554668&rft.issn=2234-943X&rft.eissn=2234-943X&rft_id=info:doi/10.3389/fonc.2021.554668&rft_dat=%3Cproquest_doaj_%3E2540513805%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-6bd2874fd23e9958635b71ec6d996b7c6151a39b88eed2914386bd7a35375d343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540513805&rft_id=info:pmid/34113554&rfr_iscdi=true