Loading…

Investigating biomass burning aerosol morphology using a laser imaging nephelometer

Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantif...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2018-02, Vol.18 (3), p.1879-1894
Main Authors: Manfred, Katherine M, Washenfelder, Rebecca A, Wagner, Nicholas L, Adler, Gabriela, Erdesz, Frank, Womack, Caroline C, Lamb, Kara D, Schwarz, Joshua P, Franchin, Alessandro, Selimovic, Vanessa, Yokelson, Robert J, Murphy, Daniel M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613
cites cdi_FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613
container_end_page 1894
container_issue 3
container_start_page 1879
container_title Atmospheric chemistry and physics
container_volume 18
creator Manfred, Katherine M
Washenfelder, Rebecca A
Wagner, Nicholas L
Adler, Gabriela
Erdesz, Frank
Womack, Caroline C
Lamb, Kara D
Schwarz, Joshua P
Franchin, Alessandro
Selimovic, Vanessa
Yokelson, Robert J
Murphy, Daniel M
description Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4–175∘ scattering angle with ∼ 0.5∘ angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 ∘C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle morphology, which is vital for understanding remote sensing data and accurately describing the aerosol population in radiative transfer calculations.
doi_str_mv 10.5194/acp-18-1879-2018
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e34e486ca8c54e44aef5fe9fc6f02615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A526821707</galeid><doaj_id>oai_doaj_org_article_e34e486ca8c54e44aef5fe9fc6f02615</doaj_id><sourcerecordid>A526821707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613</originalsourceid><addsrcrecordid>eNptkstr3DAQh01oIGmSe46GnHpwKsl6-RhCHwuBQh5nMZZHjhbbciVvaf77ytmQdqFIoJnRNz9GoymKS0quBW34Z7BzRXXeqqkYofqoOKVSk0rVjH_4xz4pPqa0JYQJQvlp8bCZfmFafA-Ln_qy9WGElMp2F6fVB4whhaEcQ5yfwxD6l3KXXi_KARLG0o_Qr_6E8zMOYcQF43lx7GBIePF2nhVPX7883n6v7n5829ze3FWWa7JUigtFuNXQKqWwVkratiEtaF0z6xrZ0I44QdF2omsZkURTqrlteac1Y5LWZ8Vmr9sF2Jo55lriiwngzWsgxN5AXLwd0GDNkWtpQVuRLQ7ohMPGWelIlhJZ62qvNcfwc5c7YrYh9yCXbxhVnAkq6_ov1UMW9ZMLSwQ7-mTNjWBSZ5SoTF3_h8qrw9HbMKHzOX6Q8OkgITML_l562KVkNg_3hyzZszb_TIro3h9OiVknweRJMFSbdRLMOgn1H_qspKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174251633</pqid></control><display><type>article</type><title>Investigating biomass burning aerosol morphology using a laser imaging nephelometer</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><source>Publicly Available Content Database</source><source>Alma/SFX Local Collection</source><creator>Manfred, Katherine M ; Washenfelder, Rebecca A ; Wagner, Nicholas L ; Adler, Gabriela ; Erdesz, Frank ; Womack, Caroline C ; Lamb, Kara D ; Schwarz, Joshua P ; Franchin, Alessandro ; Selimovic, Vanessa ; Yokelson, Robert J ; Murphy, Daniel M</creator><creatorcontrib>Manfred, Katherine M ; Washenfelder, Rebecca A ; Wagner, Nicholas L ; Adler, Gabriela ; Erdesz, Frank ; Womack, Caroline C ; Lamb, Kara D ; Schwarz, Joshua P ; Franchin, Alessandro ; Selimovic, Vanessa ; Yokelson, Robert J ; Murphy, Daniel M</creatorcontrib><description>Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4–175∘ scattering angle with ∼ 0.5∘ angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 ∘C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle morphology, which is vital for understanding remote sensing data and accurately describing the aerosol population in radiative transfer calculations.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-18-1879-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosol optical properties ; Aerosols ; Air quality ; Angular resolution ; Biomass ; Biomass burning ; Burning ; Charge coupled devices ; Field of view ; Fires ; Fractal models ; Imaging ; Imaging techniques ; In situ measurement ; Instruments ; Investigations ; Laboratories ; Lasers ; Mie scattering ; Mie theory ; Morphology ; Nephelometers ; Optical properties ; Outdoor air quality ; Particle counters ; Particle size distribution ; Radiation counters ; Radiative transfer ; Radiative transfer calculations ; Radiative transfer models ; Remote sensing ; Removal ; Scattering angle ; Semiconductor lasers ; Size distribution ; Smoke</subject><ispartof>Atmospheric chemistry and physics, 2018-02, Vol.18 (3), p.1879-1894</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613</citedby><cites>FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613</cites><orcidid>0000-0002-6850-1560 ; 0000-0002-9123-2223 ; 0000-0002-8415-6808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2174251633/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2174251633?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Manfred, Katherine M</creatorcontrib><creatorcontrib>Washenfelder, Rebecca A</creatorcontrib><creatorcontrib>Wagner, Nicholas L</creatorcontrib><creatorcontrib>Adler, Gabriela</creatorcontrib><creatorcontrib>Erdesz, Frank</creatorcontrib><creatorcontrib>Womack, Caroline C</creatorcontrib><creatorcontrib>Lamb, Kara D</creatorcontrib><creatorcontrib>Schwarz, Joshua P</creatorcontrib><creatorcontrib>Franchin, Alessandro</creatorcontrib><creatorcontrib>Selimovic, Vanessa</creatorcontrib><creatorcontrib>Yokelson, Robert J</creatorcontrib><creatorcontrib>Murphy, Daniel M</creatorcontrib><title>Investigating biomass burning aerosol morphology using a laser imaging nephelometer</title><title>Atmospheric chemistry and physics</title><description>Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4–175∘ scattering angle with ∼ 0.5∘ angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 ∘C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle morphology, which is vital for understanding remote sensing data and accurately describing the aerosol population in radiative transfer calculations.</description><subject>Aerosol optical properties</subject><subject>Aerosols</subject><subject>Air quality</subject><subject>Angular resolution</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Burning</subject><subject>Charge coupled devices</subject><subject>Field of view</subject><subject>Fires</subject><subject>Fractal models</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>In situ measurement</subject><subject>Instruments</subject><subject>Investigations</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Mie scattering</subject><subject>Mie theory</subject><subject>Morphology</subject><subject>Nephelometers</subject><subject>Optical properties</subject><subject>Outdoor air quality</subject><subject>Particle counters</subject><subject>Particle size distribution</subject><subject>Radiation counters</subject><subject>Radiative transfer</subject><subject>Radiative transfer calculations</subject><subject>Radiative transfer models</subject><subject>Remote sensing</subject><subject>Removal</subject><subject>Scattering angle</subject><subject>Semiconductor lasers</subject><subject>Size distribution</subject><subject>Smoke</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstr3DAQh01oIGmSe46GnHpwKsl6-RhCHwuBQh5nMZZHjhbbciVvaf77ytmQdqFIoJnRNz9GoymKS0quBW34Z7BzRXXeqqkYofqoOKVSk0rVjH_4xz4pPqa0JYQJQvlp8bCZfmFafA-Ln_qy9WGElMp2F6fVB4whhaEcQ5yfwxD6l3KXXi_KARLG0o_Qr_6E8zMOYcQF43lx7GBIePF2nhVPX7883n6v7n5829ze3FWWa7JUigtFuNXQKqWwVkratiEtaF0z6xrZ0I44QdF2omsZkURTqrlteac1Y5LWZ8Vmr9sF2Jo55lriiwngzWsgxN5AXLwd0GDNkWtpQVuRLQ7ohMPGWelIlhJZ62qvNcfwc5c7YrYh9yCXbxhVnAkq6_ov1UMW9ZMLSwQ7-mTNjWBSZ5SoTF3_h8qrw9HbMKHzOX6Q8OkgITML_l562KVkNg_3hyzZszb_TIro3h9OiVknweRJMFSbdRLMOgn1H_qspKA</recordid><startdate>20180208</startdate><enddate>20180208</enddate><creator>Manfred, Katherine M</creator><creator>Washenfelder, Rebecca A</creator><creator>Wagner, Nicholas L</creator><creator>Adler, Gabriela</creator><creator>Erdesz, Frank</creator><creator>Womack, Caroline C</creator><creator>Lamb, Kara D</creator><creator>Schwarz, Joshua P</creator><creator>Franchin, Alessandro</creator><creator>Selimovic, Vanessa</creator><creator>Yokelson, Robert J</creator><creator>Murphy, Daniel M</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6850-1560</orcidid><orcidid>https://orcid.org/0000-0002-9123-2223</orcidid><orcidid>https://orcid.org/0000-0002-8415-6808</orcidid></search><sort><creationdate>20180208</creationdate><title>Investigating biomass burning aerosol morphology using a laser imaging nephelometer</title><author>Manfred, Katherine M ; Washenfelder, Rebecca A ; Wagner, Nicholas L ; Adler, Gabriela ; Erdesz, Frank ; Womack, Caroline C ; Lamb, Kara D ; Schwarz, Joshua P ; Franchin, Alessandro ; Selimovic, Vanessa ; Yokelson, Robert J ; Murphy, Daniel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerosol optical properties</topic><topic>Aerosols</topic><topic>Air quality</topic><topic>Angular resolution</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Burning</topic><topic>Charge coupled devices</topic><topic>Field of view</topic><topic>Fires</topic><topic>Fractal models</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>In situ measurement</topic><topic>Instruments</topic><topic>Investigations</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Mie scattering</topic><topic>Mie theory</topic><topic>Morphology</topic><topic>Nephelometers</topic><topic>Optical properties</topic><topic>Outdoor air quality</topic><topic>Particle counters</topic><topic>Particle size distribution</topic><topic>Radiation counters</topic><topic>Radiative transfer</topic><topic>Radiative transfer calculations</topic><topic>Radiative transfer models</topic><topic>Remote sensing</topic><topic>Removal</topic><topic>Scattering angle</topic><topic>Semiconductor lasers</topic><topic>Size distribution</topic><topic>Smoke</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manfred, Katherine M</creatorcontrib><creatorcontrib>Washenfelder, Rebecca A</creatorcontrib><creatorcontrib>Wagner, Nicholas L</creatorcontrib><creatorcontrib>Adler, Gabriela</creatorcontrib><creatorcontrib>Erdesz, Frank</creatorcontrib><creatorcontrib>Womack, Caroline C</creatorcontrib><creatorcontrib>Lamb, Kara D</creatorcontrib><creatorcontrib>Schwarz, Joshua P</creatorcontrib><creatorcontrib>Franchin, Alessandro</creatorcontrib><creatorcontrib>Selimovic, Vanessa</creatorcontrib><creatorcontrib>Yokelson, Robert J</creatorcontrib><creatorcontrib>Murphy, Daniel M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manfred, Katherine M</au><au>Washenfelder, Rebecca A</au><au>Wagner, Nicholas L</au><au>Adler, Gabriela</au><au>Erdesz, Frank</au><au>Womack, Caroline C</au><au>Lamb, Kara D</au><au>Schwarz, Joshua P</au><au>Franchin, Alessandro</au><au>Selimovic, Vanessa</au><au>Yokelson, Robert J</au><au>Murphy, Daniel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating biomass burning aerosol morphology using a laser imaging nephelometer</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2018-02-08</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>1879</spage><epage>1894</epage><pages>1879-1894</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4–175∘ scattering angle with ∼ 0.5∘ angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 ∘C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle morphology, which is vital for understanding remote sensing data and accurately describing the aerosol population in radiative transfer calculations.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-18-1879-2018</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6850-1560</orcidid><orcidid>https://orcid.org/0000-0002-9123-2223</orcidid><orcidid>https://orcid.org/0000-0002-8415-6808</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2018-02, Vol.18 (3), p.1879-1894
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e34e486ca8c54e44aef5fe9fc6f02615
source Open Access: DOAJ - Directory of Open Access Journals; Publicly Available Content Database; Alma/SFX Local Collection
subjects Aerosol optical properties
Aerosols
Air quality
Angular resolution
Biomass
Biomass burning
Burning
Charge coupled devices
Field of view
Fires
Fractal models
Imaging
Imaging techniques
In situ measurement
Instruments
Investigations
Laboratories
Lasers
Mie scattering
Mie theory
Morphology
Nephelometers
Optical properties
Outdoor air quality
Particle counters
Particle size distribution
Radiation counters
Radiative transfer
Radiative transfer calculations
Radiative transfer models
Remote sensing
Removal
Scattering angle
Semiconductor lasers
Size distribution
Smoke
title Investigating biomass burning aerosol morphology using a laser imaging nephelometer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20biomass%20burning%20aerosol%20morphology%20using%20a%20laser%20imaging%20nephelometer&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Manfred,%20Katherine%20M&rft.date=2018-02-08&rft.volume=18&rft.issue=3&rft.spage=1879&rft.epage=1894&rft.pages=1879-1894&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-18-1879-2018&rft_dat=%3Cgale_doaj_%3EA526821707%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174251633&rft_id=info:pmid/&rft_galeid=A526821707&rfr_iscdi=true