Loading…
Investigating biomass burning aerosol morphology using a laser imaging nephelometer
Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantif...
Saved in:
Published in: | Atmospheric chemistry and physics 2018-02, Vol.18 (3), p.1879-1894 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613 |
container_end_page | 1894 |
container_issue | 3 |
container_start_page | 1879 |
container_title | Atmospheric chemistry and physics |
container_volume | 18 |
creator | Manfred, Katherine M Washenfelder, Rebecca A Wagner, Nicholas L Adler, Gabriela Erdesz, Frank Womack, Caroline C Lamb, Kara D Schwarz, Joshua P Franchin, Alessandro Selimovic, Vanessa Yokelson, Robert J Murphy, Daniel M |
description | Particle morphology is an important parameter affecting aerosol
optical properties that are relevant to climate and air quality, yet it is
poorly constrained due to sparse in situ measurements. Biomass burning is a
large source of aerosol that generates particles with different morphologies.
Quantifying the optical contributions of non-spherical aerosol populations is
critical for accurate radiative transfer models, and for correctly
interpreting remote sensing data. We deployed a laser imaging nephelometer at
the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from
controlled fires during the FIREX intensive laboratory study. The laser
imaging nephelometer measures the unpolarized scattering phase function of an
aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from
the bulk aerosol in the instrument is imaged onto a charge-coupled device
(CCD) using a wide-angle
field-of-view lens, which allows for measurements at 4–175∘
scattering angle with ∼ 0.5∘ angular resolution. Along with a
suite of other instruments, the laser imaging nephelometer sampled fresh
smoke emissions both directly and after removal of volatile components with a
thermodenuder at 250 ∘C. The total integrated aerosol scattering
signal agreed with both a cavity ring-down photoacoustic spectrometer system
and a traditional integrating nephelometer within instrumental uncertainties.
We compare the measured scattering phase functions at 405 nm to theoretical
models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle
morphologies based on the size distribution reported by an optical particle
counter. Results from representative fires demonstrate that particle
morphology can vary dramatically for different fuel types. In some cases, the
measured phase function cannot be described using Mie theory. This study
demonstrates the capabilities of the laser imaging nephelometer instrument to
provide realtime, in situ information about dominant particle morphology,
which is vital for understanding remote sensing data and accurately
describing the aerosol population in radiative transfer calculations. |
doi_str_mv | 10.5194/acp-18-1879-2018 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e34e486ca8c54e44aef5fe9fc6f02615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A526821707</galeid><doaj_id>oai_doaj_org_article_e34e486ca8c54e44aef5fe9fc6f02615</doaj_id><sourcerecordid>A526821707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613</originalsourceid><addsrcrecordid>eNptkstr3DAQh01oIGmSe46GnHpwKsl6-RhCHwuBQh5nMZZHjhbbciVvaf77ytmQdqFIoJnRNz9GoymKS0quBW34Z7BzRXXeqqkYofqoOKVSk0rVjH_4xz4pPqa0JYQJQvlp8bCZfmFafA-Ln_qy9WGElMp2F6fVB4whhaEcQ5yfwxD6l3KXXi_KARLG0o_Qr_6E8zMOYcQF43lx7GBIePF2nhVPX7883n6v7n5829ze3FWWa7JUigtFuNXQKqWwVkratiEtaF0z6xrZ0I44QdF2omsZkURTqrlteac1Y5LWZ8Vmr9sF2Jo55lriiwngzWsgxN5AXLwd0GDNkWtpQVuRLQ7ohMPGWelIlhJZ62qvNcfwc5c7YrYh9yCXbxhVnAkq6_ov1UMW9ZMLSwQ7-mTNjWBSZ5SoTF3_h8qrw9HbMKHzOX6Q8OkgITML_l562KVkNg_3hyzZszb_TIro3h9OiVknweRJMFSbdRLMOgn1H_qspKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174251633</pqid></control><display><type>article</type><title>Investigating biomass burning aerosol morphology using a laser imaging nephelometer</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><source>Publicly Available Content Database</source><source>Alma/SFX Local Collection</source><creator>Manfred, Katherine M ; Washenfelder, Rebecca A ; Wagner, Nicholas L ; Adler, Gabriela ; Erdesz, Frank ; Womack, Caroline C ; Lamb, Kara D ; Schwarz, Joshua P ; Franchin, Alessandro ; Selimovic, Vanessa ; Yokelson, Robert J ; Murphy, Daniel M</creator><creatorcontrib>Manfred, Katherine M ; Washenfelder, Rebecca A ; Wagner, Nicholas L ; Adler, Gabriela ; Erdesz, Frank ; Womack, Caroline C ; Lamb, Kara D ; Schwarz, Joshua P ; Franchin, Alessandro ; Selimovic, Vanessa ; Yokelson, Robert J ; Murphy, Daniel M</creatorcontrib><description>Particle morphology is an important parameter affecting aerosol
optical properties that are relevant to climate and air quality, yet it is
poorly constrained due to sparse in situ measurements. Biomass burning is a
large source of aerosol that generates particles with different morphologies.
Quantifying the optical contributions of non-spherical aerosol populations is
critical for accurate radiative transfer models, and for correctly
interpreting remote sensing data. We deployed a laser imaging nephelometer at
the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from
controlled fires during the FIREX intensive laboratory study. The laser
imaging nephelometer measures the unpolarized scattering phase function of an
aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from
the bulk aerosol in the instrument is imaged onto a charge-coupled device
(CCD) using a wide-angle
field-of-view lens, which allows for measurements at 4–175∘
scattering angle with ∼ 0.5∘ angular resolution. Along with a
suite of other instruments, the laser imaging nephelometer sampled fresh
smoke emissions both directly and after removal of volatile components with a
thermodenuder at 250 ∘C. The total integrated aerosol scattering
signal agreed with both a cavity ring-down photoacoustic spectrometer system
and a traditional integrating nephelometer within instrumental uncertainties.
We compare the measured scattering phase functions at 405 nm to theoretical
models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle
morphologies based on the size distribution reported by an optical particle
counter. Results from representative fires demonstrate that particle
morphology can vary dramatically for different fuel types. In some cases, the
measured phase function cannot be described using Mie theory. This study
demonstrates the capabilities of the laser imaging nephelometer instrument to
provide realtime, in situ information about dominant particle morphology,
which is vital for understanding remote sensing data and accurately
describing the aerosol population in radiative transfer calculations.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-18-1879-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosol optical properties ; Aerosols ; Air quality ; Angular resolution ; Biomass ; Biomass burning ; Burning ; Charge coupled devices ; Field of view ; Fires ; Fractal models ; Imaging ; Imaging techniques ; In situ measurement ; Instruments ; Investigations ; Laboratories ; Lasers ; Mie scattering ; Mie theory ; Morphology ; Nephelometers ; Optical properties ; Outdoor air quality ; Particle counters ; Particle size distribution ; Radiation counters ; Radiative transfer ; Radiative transfer calculations ; Radiative transfer models ; Remote sensing ; Removal ; Scattering angle ; Semiconductor lasers ; Size distribution ; Smoke</subject><ispartof>Atmospheric chemistry and physics, 2018-02, Vol.18 (3), p.1879-1894</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613</citedby><cites>FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613</cites><orcidid>0000-0002-6850-1560 ; 0000-0002-9123-2223 ; 0000-0002-8415-6808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2174251633/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2174251633?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Manfred, Katherine M</creatorcontrib><creatorcontrib>Washenfelder, Rebecca A</creatorcontrib><creatorcontrib>Wagner, Nicholas L</creatorcontrib><creatorcontrib>Adler, Gabriela</creatorcontrib><creatorcontrib>Erdesz, Frank</creatorcontrib><creatorcontrib>Womack, Caroline C</creatorcontrib><creatorcontrib>Lamb, Kara D</creatorcontrib><creatorcontrib>Schwarz, Joshua P</creatorcontrib><creatorcontrib>Franchin, Alessandro</creatorcontrib><creatorcontrib>Selimovic, Vanessa</creatorcontrib><creatorcontrib>Yokelson, Robert J</creatorcontrib><creatorcontrib>Murphy, Daniel M</creatorcontrib><title>Investigating biomass burning aerosol morphology using a laser imaging nephelometer</title><title>Atmospheric chemistry and physics</title><description>Particle morphology is an important parameter affecting aerosol
optical properties that are relevant to climate and air quality, yet it is
poorly constrained due to sparse in situ measurements. Biomass burning is a
large source of aerosol that generates particles with different morphologies.
Quantifying the optical contributions of non-spherical aerosol populations is
critical for accurate radiative transfer models, and for correctly
interpreting remote sensing data. We deployed a laser imaging nephelometer at
the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from
controlled fires during the FIREX intensive laboratory study. The laser
imaging nephelometer measures the unpolarized scattering phase function of an
aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from
the bulk aerosol in the instrument is imaged onto a charge-coupled device
(CCD) using a wide-angle
field-of-view lens, which allows for measurements at 4–175∘
scattering angle with ∼ 0.5∘ angular resolution. Along with a
suite of other instruments, the laser imaging nephelometer sampled fresh
smoke emissions both directly and after removal of volatile components with a
thermodenuder at 250 ∘C. The total integrated aerosol scattering
signal agreed with both a cavity ring-down photoacoustic spectrometer system
and a traditional integrating nephelometer within instrumental uncertainties.
We compare the measured scattering phase functions at 405 nm to theoretical
models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle
morphologies based on the size distribution reported by an optical particle
counter. Results from representative fires demonstrate that particle
morphology can vary dramatically for different fuel types. In some cases, the
measured phase function cannot be described using Mie theory. This study
demonstrates the capabilities of the laser imaging nephelometer instrument to
provide realtime, in situ information about dominant particle morphology,
which is vital for understanding remote sensing data and accurately
describing the aerosol population in radiative transfer calculations.</description><subject>Aerosol optical properties</subject><subject>Aerosols</subject><subject>Air quality</subject><subject>Angular resolution</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Burning</subject><subject>Charge coupled devices</subject><subject>Field of view</subject><subject>Fires</subject><subject>Fractal models</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>In situ measurement</subject><subject>Instruments</subject><subject>Investigations</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Mie scattering</subject><subject>Mie theory</subject><subject>Morphology</subject><subject>Nephelometers</subject><subject>Optical properties</subject><subject>Outdoor air quality</subject><subject>Particle counters</subject><subject>Particle size distribution</subject><subject>Radiation counters</subject><subject>Radiative transfer</subject><subject>Radiative transfer calculations</subject><subject>Radiative transfer models</subject><subject>Remote sensing</subject><subject>Removal</subject><subject>Scattering angle</subject><subject>Semiconductor lasers</subject><subject>Size distribution</subject><subject>Smoke</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstr3DAQh01oIGmSe46GnHpwKsl6-RhCHwuBQh5nMZZHjhbbciVvaf77ytmQdqFIoJnRNz9GoymKS0quBW34Z7BzRXXeqqkYofqoOKVSk0rVjH_4xz4pPqa0JYQJQvlp8bCZfmFafA-Ln_qy9WGElMp2F6fVB4whhaEcQ5yfwxD6l3KXXi_KARLG0o_Qr_6E8zMOYcQF43lx7GBIePF2nhVPX7883n6v7n5829ze3FWWa7JUigtFuNXQKqWwVkratiEtaF0z6xrZ0I44QdF2omsZkURTqrlteac1Y5LWZ8Vmr9sF2Jo55lriiwngzWsgxN5AXLwd0GDNkWtpQVuRLQ7ohMPGWelIlhJZ62qvNcfwc5c7YrYh9yCXbxhVnAkq6_ov1UMW9ZMLSwQ7-mTNjWBSZ5SoTF3_h8qrw9HbMKHzOX6Q8OkgITML_l562KVkNg_3hyzZszb_TIro3h9OiVknweRJMFSbdRLMOgn1H_qspKA</recordid><startdate>20180208</startdate><enddate>20180208</enddate><creator>Manfred, Katherine M</creator><creator>Washenfelder, Rebecca A</creator><creator>Wagner, Nicholas L</creator><creator>Adler, Gabriela</creator><creator>Erdesz, Frank</creator><creator>Womack, Caroline C</creator><creator>Lamb, Kara D</creator><creator>Schwarz, Joshua P</creator><creator>Franchin, Alessandro</creator><creator>Selimovic, Vanessa</creator><creator>Yokelson, Robert J</creator><creator>Murphy, Daniel M</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6850-1560</orcidid><orcidid>https://orcid.org/0000-0002-9123-2223</orcidid><orcidid>https://orcid.org/0000-0002-8415-6808</orcidid></search><sort><creationdate>20180208</creationdate><title>Investigating biomass burning aerosol morphology using a laser imaging nephelometer</title><author>Manfred, Katherine M ; Washenfelder, Rebecca A ; Wagner, Nicholas L ; Adler, Gabriela ; Erdesz, Frank ; Womack, Caroline C ; Lamb, Kara D ; Schwarz, Joshua P ; Franchin, Alessandro ; Selimovic, Vanessa ; Yokelson, Robert J ; Murphy, Daniel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerosol optical properties</topic><topic>Aerosols</topic><topic>Air quality</topic><topic>Angular resolution</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Burning</topic><topic>Charge coupled devices</topic><topic>Field of view</topic><topic>Fires</topic><topic>Fractal models</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>In situ measurement</topic><topic>Instruments</topic><topic>Investigations</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Mie scattering</topic><topic>Mie theory</topic><topic>Morphology</topic><topic>Nephelometers</topic><topic>Optical properties</topic><topic>Outdoor air quality</topic><topic>Particle counters</topic><topic>Particle size distribution</topic><topic>Radiation counters</topic><topic>Radiative transfer</topic><topic>Radiative transfer calculations</topic><topic>Radiative transfer models</topic><topic>Remote sensing</topic><topic>Removal</topic><topic>Scattering angle</topic><topic>Semiconductor lasers</topic><topic>Size distribution</topic><topic>Smoke</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manfred, Katherine M</creatorcontrib><creatorcontrib>Washenfelder, Rebecca A</creatorcontrib><creatorcontrib>Wagner, Nicholas L</creatorcontrib><creatorcontrib>Adler, Gabriela</creatorcontrib><creatorcontrib>Erdesz, Frank</creatorcontrib><creatorcontrib>Womack, Caroline C</creatorcontrib><creatorcontrib>Lamb, Kara D</creatorcontrib><creatorcontrib>Schwarz, Joshua P</creatorcontrib><creatorcontrib>Franchin, Alessandro</creatorcontrib><creatorcontrib>Selimovic, Vanessa</creatorcontrib><creatorcontrib>Yokelson, Robert J</creatorcontrib><creatorcontrib>Murphy, Daniel M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manfred, Katherine M</au><au>Washenfelder, Rebecca A</au><au>Wagner, Nicholas L</au><au>Adler, Gabriela</au><au>Erdesz, Frank</au><au>Womack, Caroline C</au><au>Lamb, Kara D</au><au>Schwarz, Joshua P</au><au>Franchin, Alessandro</au><au>Selimovic, Vanessa</au><au>Yokelson, Robert J</au><au>Murphy, Daniel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating biomass burning aerosol morphology using a laser imaging nephelometer</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2018-02-08</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>1879</spage><epage>1894</epage><pages>1879-1894</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Particle morphology is an important parameter affecting aerosol
optical properties that are relevant to climate and air quality, yet it is
poorly constrained due to sparse in situ measurements. Biomass burning is a
large source of aerosol that generates particles with different morphologies.
Quantifying the optical contributions of non-spherical aerosol populations is
critical for accurate radiative transfer models, and for correctly
interpreting remote sensing data. We deployed a laser imaging nephelometer at
the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from
controlled fires during the FIREX intensive laboratory study. The laser
imaging nephelometer measures the unpolarized scattering phase function of an
aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from
the bulk aerosol in the instrument is imaged onto a charge-coupled device
(CCD) using a wide-angle
field-of-view lens, which allows for measurements at 4–175∘
scattering angle with ∼ 0.5∘ angular resolution. Along with a
suite of other instruments, the laser imaging nephelometer sampled fresh
smoke emissions both directly and after removal of volatile components with a
thermodenuder at 250 ∘C. The total integrated aerosol scattering
signal agreed with both a cavity ring-down photoacoustic spectrometer system
and a traditional integrating nephelometer within instrumental uncertainties.
We compare the measured scattering phase functions at 405 nm to theoretical
models for spherical (Mie) and fractal (Rayleigh–Debye–Gans) particle
morphologies based on the size distribution reported by an optical particle
counter. Results from representative fires demonstrate that particle
morphology can vary dramatically for different fuel types. In some cases, the
measured phase function cannot be described using Mie theory. This study
demonstrates the capabilities of the laser imaging nephelometer instrument to
provide realtime, in situ information about dominant particle morphology,
which is vital for understanding remote sensing data and accurately
describing the aerosol population in radiative transfer calculations.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-18-1879-2018</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6850-1560</orcidid><orcidid>https://orcid.org/0000-0002-9123-2223</orcidid><orcidid>https://orcid.org/0000-0002-8415-6808</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2018-02, Vol.18 (3), p.1879-1894 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e34e486ca8c54e44aef5fe9fc6f02615 |
source | Open Access: DOAJ - Directory of Open Access Journals; Publicly Available Content Database; Alma/SFX Local Collection |
subjects | Aerosol optical properties Aerosols Air quality Angular resolution Biomass Biomass burning Burning Charge coupled devices Field of view Fires Fractal models Imaging Imaging techniques In situ measurement Instruments Investigations Laboratories Lasers Mie scattering Mie theory Morphology Nephelometers Optical properties Outdoor air quality Particle counters Particle size distribution Radiation counters Radiative transfer Radiative transfer calculations Radiative transfer models Remote sensing Removal Scattering angle Semiconductor lasers Size distribution Smoke |
title | Investigating biomass burning aerosol morphology using a laser imaging nephelometer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20biomass%20burning%20aerosol%20morphology%20using%20a%20laser%20imaging%20nephelometer&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Manfred,%20Katherine%20M&rft.date=2018-02-08&rft.volume=18&rft.issue=3&rft.spage=1879&rft.epage=1894&rft.pages=1879-1894&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-18-1879-2018&rft_dat=%3Cgale_doaj_%3EA526821707%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-745704c8ab777e3776cb90ba8832cf9691d0f51ecd5db206081184cb4d8822613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174251633&rft_id=info:pmid/&rft_galeid=A526821707&rfr_iscdi=true |