Loading…
Insight into the structure of black coatings of ancient Egyptian mummies by advanced electron magnetic resonance of vanadyl complexes
Ancient Egyptian mummies from the Late Period to the Greco–Roman Period were covered by a black coating consisting of complex and heterogeneous mixtures of conifer resins, wax, fat and oil with variable amounts of bitumen. Natural bitumen always contains traces of vanadyl porphyrin complexes that we...
Saved in:
Published in: | Magnetic Resonance : (Göttingen) 2022-07, Vol.3 (2), p.111-124 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ancient Egyptian mummies from the Late Period to the Greco–Roman Period were covered by a black coating consisting of complex and heterogeneous mixtures of conifer resins, wax, fat and oil with variable amounts of bitumen. Natural bitumen always contains traces of vanadyl porphyrin complexes that we used here as internal probes to explore the nanoscale environment of V4+ ions in these black coatings by electron nuclear double resonance (ENDOR) and hyperfine sub-level correlation spectroscopy (HYSCORE). Four types of vanadyl porphyrin complexes were identified from the analysis of 14N hyperfine interactions. Three types (referred to as VO-P1, VO-P2 and VO-P3) are present in natural bitumen from the Dead Sea, among which VO-P1 and VO-P2 are also present in black coatings of mummies. The absence of VO-P3 in mummies, which is replaced by another complex, VO-P4, may be due to its transformation during preparation of the black matter for embalming. Analysis of 1H hyperfine interaction shows that bitumen and other natural substances are intimately mixed in these black coatings, with aggregate sizes of bitumen increasing with the bitumen content but not exceeding a few nanometres. |
---|---|
ISSN: | 2699-0016 2699-0016 |
DOI: | 10.5194/mr-3-111-2022 |