Loading…

Studies on the Mechanical, Strengthening Mechanisms and Tribological Characteristics of AA7150-Al2O3 Nano-Metal Matrix Composites

Stir-casting with ultrasonic cavitation produced nano-Al2O3-filled AA7150 matrix composites in this study. The SEM microstructure study shows that all composites include nano-Al2O3 particles with consistent particle sizes and homogenous distribution. EDS and XRD showed no secondary phases or impurit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of composites science 2024-03, Vol.8 (3), p.97
Main Authors: Maddaiah, K. Chinna, Kumar, G. B. Veeresh, Pramod, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-8d0987ab9a35eff62c1ddb72bc4ce168986dc4c045174a93a1c493f4e7450db83
cites cdi_FETCH-LOGICAL-c361t-8d0987ab9a35eff62c1ddb72bc4ce168986dc4c045174a93a1c493f4e7450db83
container_end_page
container_issue 3
container_start_page 97
container_title Journal of composites science
container_volume 8
creator Maddaiah, K. Chinna
Kumar, G. B. Veeresh
Pramod, R.
description Stir-casting with ultrasonic cavitation produced nano-Al2O3-filled AA7150 matrix composites in this study. The SEM microstructure study shows that all composites include nano-Al2O3 particles with consistent particle sizes and homogenous distribution. EDS and XRD showed no secondary phases or impurities in the composite. Optical microscopy showed intense ultrasonic cavitation effects, and nano-Al2O3 particles caused grain refinement in the AA7150 matrix. The composite’s mechanical characteristics improved when the Al2O3 nanoparticle weight percentage (wt.%) increased. With only 2.0 wt.% nano-Al2O3 particles, the composites yielded 232 MPa, 97.52% higher than the sonicated AA7150 matrix alloy. Multiple models were used to characterize the strength of the AA7150 nano-Al2O3 composite. The findings showed that thermal incongruity, Orowan strengthening, the Hall–Petch mechanism, and load transfer effects contributed the most towards the increased strength of the composite. Increasing the nano-Al2O3 wt.% in the AA7150 matrix improved hardness by 95.08%, yield strength by 90.34%, and sliding wear resistance by 46.52%. This enhancement may be attributed to the combined effects of better grain refinement, enhanced dispersion with dislocation strengthening, and better load transfer between the matrix and reinforcement, which are assisted by the inclusion of reinforcements. This result was confirmed by optical studies.
doi_str_mv 10.3390/jcs8030097
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e35f8ea1f68f46729771a69a6a92d8a7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e35f8ea1f68f46729771a69a6a92d8a7</doaj_id><sourcerecordid>3003034072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-8d0987ab9a35eff62c1ddb72bc4ce168986dc4c045174a93a1c493f4e7450db83</originalsourceid><addsrcrecordid>eNpNUU1rGzEUXEoLDWku_QWC3ko2fVppV9LRmDQNxM0hKfQm3urDllmvXEmG5Nh_HiVu2p7eMG-YN7xpmo8ULhhT8GVrsgQGoMSb5qTrgbdciJ9v_8Pvm7OctwDQCcVBsZPm91052OAyiTMpG0dWzmxwDganc3JXkpvXlZ3DvH7d5F0mOFtyn8IYp7h-lpLlBhOa4lLIJZhq5sliIWgP7WLqbhn5jnNsV65U6QpLCg9kGXf7mENx-UPzzuOU3dmfedr8-Hp5v_zW3txeXS8XN61hAy2ttKCkwFEh6533Q2eotaPoRsONo4NUcrAVAu-p4KgYUsMV89wJ3oMdJTttro--NuJW71PYYXrUEYN-IWJaa0w1_eS0Y72XDqkfpOeD6JQQFAeFA6rOShTV69PRa5_ir4PLRW_jIc01vq7_Z8A4iK6qPh9VJsWck_N_r1LQz43pf42xJ6yCiGc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003034072</pqid></control><display><type>article</type><title>Studies on the Mechanical, Strengthening Mechanisms and Tribological Characteristics of AA7150-Al2O3 Nano-Metal Matrix Composites</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Maddaiah, K. Chinna ; Kumar, G. B. Veeresh ; Pramod, R.</creator><creatorcontrib>Maddaiah, K. Chinna ; Kumar, G. B. Veeresh ; Pramod, R.</creatorcontrib><description>Stir-casting with ultrasonic cavitation produced nano-Al2O3-filled AA7150 matrix composites in this study. The SEM microstructure study shows that all composites include nano-Al2O3 particles with consistent particle sizes and homogenous distribution. EDS and XRD showed no secondary phases or impurities in the composite. Optical microscopy showed intense ultrasonic cavitation effects, and nano-Al2O3 particles caused grain refinement in the AA7150 matrix. The composite’s mechanical characteristics improved when the Al2O3 nanoparticle weight percentage (wt.%) increased. With only 2.0 wt.% nano-Al2O3 particles, the composites yielded 232 MPa, 97.52% higher than the sonicated AA7150 matrix alloy. Multiple models were used to characterize the strength of the AA7150 nano-Al2O3 composite. The findings showed that thermal incongruity, Orowan strengthening, the Hall–Petch mechanism, and load transfer effects contributed the most towards the increased strength of the composite. Increasing the nano-Al2O3 wt.% in the AA7150 matrix improved hardness by 95.08%, yield strength by 90.34%, and sliding wear resistance by 46.52%. This enhancement may be attributed to the combined effects of better grain refinement, enhanced dispersion with dislocation strengthening, and better load transfer between the matrix and reinforcement, which are assisted by the inclusion of reinforcements. This result was confirmed by optical studies.</description><identifier>ISSN: 2504-477X</identifier><identifier>EISSN: 2504-477X</identifier><identifier>DOI: 10.3390/jcs8030097</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>AA7150-Al2O3 composites ; Alloys ; Aluminum ; Aluminum oxide ; Cavitation ; Composite materials ; dislocation ; Frictional wear ; Grain refinement ; Load transfer ; Mechanical properties ; Metal fatigue ; Metal matrix composites ; Nanoparticles ; Optical microscopy ; Particle size distribution ; Particulate composites ; Powder metallurgy ; Sliding friction ; Solidification ; Strengthening ; strengthening mechanism ; Temperature ; Tensile strength ; Tribology ; ultrasonic cavitation ; wear ; Wear resistance</subject><ispartof>Journal of composites science, 2024-03, Vol.8 (3), p.97</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-8d0987ab9a35eff62c1ddb72bc4ce168986dc4c045174a93a1c493f4e7450db83</citedby><cites>FETCH-LOGICAL-c361t-8d0987ab9a35eff62c1ddb72bc4ce168986dc4c045174a93a1c493f4e7450db83</cites><orcidid>0000-0002-8503-2874 ; 0000-0003-2421-4188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003034072/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003034072?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Maddaiah, K. Chinna</creatorcontrib><creatorcontrib>Kumar, G. B. Veeresh</creatorcontrib><creatorcontrib>Pramod, R.</creatorcontrib><title>Studies on the Mechanical, Strengthening Mechanisms and Tribological Characteristics of AA7150-Al2O3 Nano-Metal Matrix Composites</title><title>Journal of composites science</title><description>Stir-casting with ultrasonic cavitation produced nano-Al2O3-filled AA7150 matrix composites in this study. The SEM microstructure study shows that all composites include nano-Al2O3 particles with consistent particle sizes and homogenous distribution. EDS and XRD showed no secondary phases or impurities in the composite. Optical microscopy showed intense ultrasonic cavitation effects, and nano-Al2O3 particles caused grain refinement in the AA7150 matrix. The composite’s mechanical characteristics improved when the Al2O3 nanoparticle weight percentage (wt.%) increased. With only 2.0 wt.% nano-Al2O3 particles, the composites yielded 232 MPa, 97.52% higher than the sonicated AA7150 matrix alloy. Multiple models were used to characterize the strength of the AA7150 nano-Al2O3 composite. The findings showed that thermal incongruity, Orowan strengthening, the Hall–Petch mechanism, and load transfer effects contributed the most towards the increased strength of the composite. Increasing the nano-Al2O3 wt.% in the AA7150 matrix improved hardness by 95.08%, yield strength by 90.34%, and sliding wear resistance by 46.52%. This enhancement may be attributed to the combined effects of better grain refinement, enhanced dispersion with dislocation strengthening, and better load transfer between the matrix and reinforcement, which are assisted by the inclusion of reinforcements. This result was confirmed by optical studies.</description><subject>AA7150-Al2O3 composites</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Cavitation</subject><subject>Composite materials</subject><subject>dislocation</subject><subject>Frictional wear</subject><subject>Grain refinement</subject><subject>Load transfer</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Metal matrix composites</subject><subject>Nanoparticles</subject><subject>Optical microscopy</subject><subject>Particle size distribution</subject><subject>Particulate composites</subject><subject>Powder metallurgy</subject><subject>Sliding friction</subject><subject>Solidification</subject><subject>Strengthening</subject><subject>strengthening mechanism</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Tribology</subject><subject>ultrasonic cavitation</subject><subject>wear</subject><subject>Wear resistance</subject><issn>2504-477X</issn><issn>2504-477X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEUXEoLDWku_QWC3ko2fVppV9LRmDQNxM0hKfQm3urDllmvXEmG5Nh_HiVu2p7eMG-YN7xpmo8ULhhT8GVrsgQGoMSb5qTrgbdciJ9v_8Pvm7OctwDQCcVBsZPm91052OAyiTMpG0dWzmxwDganc3JXkpvXlZ3DvH7d5F0mOFtyn8IYp7h-lpLlBhOa4lLIJZhq5sliIWgP7WLqbhn5jnNsV65U6QpLCg9kGXf7mENx-UPzzuOU3dmfedr8-Hp5v_zW3txeXS8XN61hAy2ttKCkwFEh6533Q2eotaPoRsONo4NUcrAVAu-p4KgYUsMV89wJ3oMdJTttro--NuJW71PYYXrUEYN-IWJaa0w1_eS0Y72XDqkfpOeD6JQQFAeFA6rOShTV69PRa5_ir4PLRW_jIc01vq7_Z8A4iK6qPh9VJsWck_N_r1LQz43pf42xJ6yCiGc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Maddaiah, K. Chinna</creator><creator>Kumar, G. B. Veeresh</creator><creator>Pramod, R.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8503-2874</orcidid><orcidid>https://orcid.org/0000-0003-2421-4188</orcidid></search><sort><creationdate>20240301</creationdate><title>Studies on the Mechanical, Strengthening Mechanisms and Tribological Characteristics of AA7150-Al2O3 Nano-Metal Matrix Composites</title><author>Maddaiah, K. Chinna ; Kumar, G. B. Veeresh ; Pramod, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-8d0987ab9a35eff62c1ddb72bc4ce168986dc4c045174a93a1c493f4e7450db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AA7150-Al2O3 composites</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Cavitation</topic><topic>Composite materials</topic><topic>dislocation</topic><topic>Frictional wear</topic><topic>Grain refinement</topic><topic>Load transfer</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Metal matrix composites</topic><topic>Nanoparticles</topic><topic>Optical microscopy</topic><topic>Particle size distribution</topic><topic>Particulate composites</topic><topic>Powder metallurgy</topic><topic>Sliding friction</topic><topic>Solidification</topic><topic>Strengthening</topic><topic>strengthening mechanism</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Tribology</topic><topic>ultrasonic cavitation</topic><topic>wear</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maddaiah, K. Chinna</creatorcontrib><creatorcontrib>Kumar, G. B. Veeresh</creatorcontrib><creatorcontrib>Pramod, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of composites science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maddaiah, K. Chinna</au><au>Kumar, G. B. Veeresh</au><au>Pramod, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies on the Mechanical, Strengthening Mechanisms and Tribological Characteristics of AA7150-Al2O3 Nano-Metal Matrix Composites</atitle><jtitle>Journal of composites science</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>8</volume><issue>3</issue><spage>97</spage><pages>97-</pages><issn>2504-477X</issn><eissn>2504-477X</eissn><abstract>Stir-casting with ultrasonic cavitation produced nano-Al2O3-filled AA7150 matrix composites in this study. The SEM microstructure study shows that all composites include nano-Al2O3 particles with consistent particle sizes and homogenous distribution. EDS and XRD showed no secondary phases or impurities in the composite. Optical microscopy showed intense ultrasonic cavitation effects, and nano-Al2O3 particles caused grain refinement in the AA7150 matrix. The composite’s mechanical characteristics improved when the Al2O3 nanoparticle weight percentage (wt.%) increased. With only 2.0 wt.% nano-Al2O3 particles, the composites yielded 232 MPa, 97.52% higher than the sonicated AA7150 matrix alloy. Multiple models were used to characterize the strength of the AA7150 nano-Al2O3 composite. The findings showed that thermal incongruity, Orowan strengthening, the Hall–Petch mechanism, and load transfer effects contributed the most towards the increased strength of the composite. Increasing the nano-Al2O3 wt.% in the AA7150 matrix improved hardness by 95.08%, yield strength by 90.34%, and sliding wear resistance by 46.52%. This enhancement may be attributed to the combined effects of better grain refinement, enhanced dispersion with dislocation strengthening, and better load transfer between the matrix and reinforcement, which are assisted by the inclusion of reinforcements. This result was confirmed by optical studies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jcs8030097</doi><orcidid>https://orcid.org/0000-0002-8503-2874</orcidid><orcidid>https://orcid.org/0000-0003-2421-4188</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-477X
ispartof Journal of composites science, 2024-03, Vol.8 (3), p.97
issn 2504-477X
2504-477X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e35f8ea1f68f46729771a69a6a92d8a7
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects AA7150-Al2O3 composites
Alloys
Aluminum
Aluminum oxide
Cavitation
Composite materials
dislocation
Frictional wear
Grain refinement
Load transfer
Mechanical properties
Metal fatigue
Metal matrix composites
Nanoparticles
Optical microscopy
Particle size distribution
Particulate composites
Powder metallurgy
Sliding friction
Solidification
Strengthening
strengthening mechanism
Temperature
Tensile strength
Tribology
ultrasonic cavitation
wear
Wear resistance
title Studies on the Mechanical, Strengthening Mechanisms and Tribological Characteristics of AA7150-Al2O3 Nano-Metal Matrix Composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20on%20the%20Mechanical,%20Strengthening%20Mechanisms%20and%20Tribological%20Characteristics%20of%20AA7150-Al2O3%20Nano-Metal%20Matrix%20Composites&rft.jtitle=Journal%20of%20composites%20science&rft.au=Maddaiah,%20K.%20Chinna&rft.date=2024-03-01&rft.volume=8&rft.issue=3&rft.spage=97&rft.pages=97-&rft.issn=2504-477X&rft.eissn=2504-477X&rft_id=info:doi/10.3390/jcs8030097&rft_dat=%3Cproquest_doaj_%3E3003034072%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-8d0987ab9a35eff62c1ddb72bc4ce168986dc4c045174a93a1c493f4e7450db83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003034072&rft_id=info:pmid/&rfr_iscdi=true