Loading…

Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole

We consider loop quantum gravity (LQG) motivated 4 D polymerized black hole and study shadow, quasinormal modes, and Hawking radiation. We obtain analytical expressions of photonsphere radius and shadow radius and study their qualitative and quantitative nature of variation with respect to the LQG p...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2023-10, Vol.83 (10), p.952-16, Article 952
Main Author: Jha, Sohan Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3
cites cdi_FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3
container_end_page 16
container_issue 10
container_start_page 952
container_title The European physical journal. C, Particles and fields
container_volume 83
creator Jha, Sohan Kumar
description We consider loop quantum gravity (LQG) motivated 4 D polymerized black hole and study shadow, quasinormal modes, and Hawking radiation. We obtain analytical expressions of photonsphere radius and shadow radius and study their qualitative and quantitative nature of variation with respect to the LQG parameter α . We also show shadows of the black hole for various values of α . Our study reveals that both radii increase with an increase in the parameter value. We, then, study quasinormal modes for scalar and electromagnetic perturbations using the 6th order WKB method. Our study reveals that the LQG parameter impacts quasinormal modes. We observe that the oscillation of gravitational wave (GW) and decay rate decrease as α increases. At the same time, the error associated with the 6th order WKB method increases with an increase in α . The ringdown waveform for electromagnetic and scalar perturbations is shown. We also study greybody bounds, power spectrum, and sparsity of Hawking radiation. Greybody bounds for electromagnetic perturbations do not depend on α . For scalar perturbation, greybody bounds increase as the LQG parameter increases, but the variation with α is very small. The peak of the power spectrum as well as total power emitted decrease as we increase the value of α . Also, the sparsity of Hawking radiation gets significantly impacted by quantum correction. Finally, we obtain the area spectrum of the black hole. It is found to be significantly different than that for the Schwarzschild black hole.
doi_str_mv 10.1140/epjc/s10052-023-12123-4
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e36bb095fa34480aad1f861b5a337f46</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A770145176</galeid><doaj_id>oai_doaj_org_article_e36bb095fa34480aad1f861b5a337f46</doaj_id><sourcerecordid>A770145176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3</originalsourceid><addsrcrecordid>eNqFkl9r1jAYxYsoOKefwYJXwrrlX5v2cgznXhgITq_Dkybp8q5NuiTdfP30pquou5JAEk7O7_AETlG8x-gUY4bO9LzvzyJGqCYVIrTCBOedvSiOMKOsarL-8p_76-JNjHuEEGGoPSp-3tyC8o8n5f0C0TofJhjLySsdT8oh6IP06lBKvziVBXCqvILHO-uGMs4Qok2H0pty9H5eA1xapkzBw6pPPtkHSFqVzrsq-ARp5eQI_V1560f9tnhlYIz63e_zuPh--enbxVV1_eXz7uL8uuprQlKlcAOqkcAZ6zoiCTedwbLhdcPalkvaKI7XN9OBZm1PCWEEiKR93UmujaHHxW7LVR72Yg52gnAQHqx4EnwYBIRk-1ELTRspUVcboIy1CEBh0zZY1kApN6zJWR-2rDn4-0XHJPZ-CS6PL0jbopqTmvDsOt1cA-RQ64xPAfq8lJ5s7502NuvnnCPMaszX2I_PgOxJ-kcaYIlR7G6-PvfyzdsHH2PQ5s-XMBJrI8TaCLE1QuRGiKdGCJbJdiNjJtygw9_h_4f-AusnvJU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880572527</pqid></control><display><type>article</type><title>Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Jha, Sohan Kumar</creator><creatorcontrib>Jha, Sohan Kumar</creatorcontrib><description>We consider loop quantum gravity (LQG) motivated 4 D polymerized black hole and study shadow, quasinormal modes, and Hawking radiation. We obtain analytical expressions of photonsphere radius and shadow radius and study their qualitative and quantitative nature of variation with respect to the LQG parameter α . We also show shadows of the black hole for various values of α . Our study reveals that both radii increase with an increase in the parameter value. We, then, study quasinormal modes for scalar and electromagnetic perturbations using the 6th order WKB method. Our study reveals that the LQG parameter impacts quasinormal modes. We observe that the oscillation of gravitational wave (GW) and decay rate decrease as α increases. At the same time, the error associated with the 6th order WKB method increases with an increase in α . The ringdown waveform for electromagnetic and scalar perturbations is shown. We also study greybody bounds, power spectrum, and sparsity of Hawking radiation. Greybody bounds for electromagnetic perturbations do not depend on α . For scalar perturbation, greybody bounds increase as the LQG parameter increases, but the variation with α is very small. The peak of the power spectrum as well as total power emitted decrease as we increase the value of α . Also, the sparsity of Hawking radiation gets significantly impacted by quantum correction. Finally, we obtain the area spectrum of the black hole. It is found to be significantly different than that for the Schwarzschild black hole.</description><identifier>ISSN: 1434-6052</identifier><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-023-12123-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Astronomy ; Astrophysics and Cosmology ; Black holes ; Decay rate ; Electromagnetism ; Elementary Particles ; Gravitational waves ; Hadrons ; Hawking radiation ; Heavy Ions ; Mathematical analysis ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Parameters ; Perturbation ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum gravity ; Radiation ; Regular Article - Theoretical Physics ; Shadows ; Sparsity ; String Theory ; Waveforms</subject><ispartof>The European physical journal. C, Particles and fields, 2023-10, Vol.83 (10), p.952-16, Article 952</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3</citedby><cites>FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3</cites><orcidid>0000-0003-4457-8683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2880572527/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2880572527?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Jha, Sohan Kumar</creatorcontrib><title>Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>We consider loop quantum gravity (LQG) motivated 4 D polymerized black hole and study shadow, quasinormal modes, and Hawking radiation. We obtain analytical expressions of photonsphere radius and shadow radius and study their qualitative and quantitative nature of variation with respect to the LQG parameter α . We also show shadows of the black hole for various values of α . Our study reveals that both radii increase with an increase in the parameter value. We, then, study quasinormal modes for scalar and electromagnetic perturbations using the 6th order WKB method. Our study reveals that the LQG parameter impacts quasinormal modes. We observe that the oscillation of gravitational wave (GW) and decay rate decrease as α increases. At the same time, the error associated with the 6th order WKB method increases with an increase in α . The ringdown waveform for electromagnetic and scalar perturbations is shown. We also study greybody bounds, power spectrum, and sparsity of Hawking radiation. Greybody bounds for electromagnetic perturbations do not depend on α . For scalar perturbation, greybody bounds increase as the LQG parameter increases, but the variation with α is very small. The peak of the power spectrum as well as total power emitted decrease as we increase the value of α . Also, the sparsity of Hawking radiation gets significantly impacted by quantum correction. Finally, we obtain the area spectrum of the black hole. It is found to be significantly different than that for the Schwarzschild black hole.</description><subject>Analysis</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Black holes</subject><subject>Decay rate</subject><subject>Electromagnetism</subject><subject>Elementary Particles</subject><subject>Gravitational waves</subject><subject>Hadrons</subject><subject>Hawking radiation</subject><subject>Heavy Ions</subject><subject>Mathematical analysis</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum gravity</subject><subject>Radiation</subject><subject>Regular Article - Theoretical Physics</subject><subject>Shadows</subject><subject>Sparsity</subject><subject>String Theory</subject><subject>Waveforms</subject><issn>1434-6052</issn><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkl9r1jAYxYsoOKefwYJXwrrlX5v2cgznXhgITq_Dkybp8q5NuiTdfP30pquou5JAEk7O7_AETlG8x-gUY4bO9LzvzyJGqCYVIrTCBOedvSiOMKOsarL-8p_76-JNjHuEEGGoPSp-3tyC8o8n5f0C0TofJhjLySsdT8oh6IP06lBKvziVBXCqvILHO-uGMs4Qok2H0pty9H5eA1xapkzBw6pPPtkHSFqVzrsq-ARp5eQI_V1560f9tnhlYIz63e_zuPh--enbxVV1_eXz7uL8uuprQlKlcAOqkcAZ6zoiCTedwbLhdcPalkvaKI7XN9OBZm1PCWEEiKR93UmujaHHxW7LVR72Yg52gnAQHqx4EnwYBIRk-1ELTRspUVcboIy1CEBh0zZY1kApN6zJWR-2rDn4-0XHJPZ-CS6PL0jbopqTmvDsOt1cA-RQ64xPAfq8lJ5s7502NuvnnCPMaszX2I_PgOxJ-kcaYIlR7G6-PvfyzdsHH2PQ5s-XMBJrI8TaCLE1QuRGiKdGCJbJdiNjJtygw9_h_4f-AusnvJU</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Jha, Sohan Kumar</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4457-8683</orcidid></search><sort><creationdate>20231001</creationdate><title>Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole</title><author>Jha, Sohan Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Black holes</topic><topic>Decay rate</topic><topic>Electromagnetism</topic><topic>Elementary Particles</topic><topic>Gravitational waves</topic><topic>Hadrons</topic><topic>Hawking radiation</topic><topic>Heavy Ions</topic><topic>Mathematical analysis</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum gravity</topic><topic>Radiation</topic><topic>Regular Article - Theoretical Physics</topic><topic>Shadows</topic><topic>Sparsity</topic><topic>String Theory</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Sohan Kumar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jha, Sohan Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>83</volume><issue>10</issue><spage>952</spage><epage>16</epage><pages>952-16</pages><artnum>952</artnum><issn>1434-6052</issn><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>We consider loop quantum gravity (LQG) motivated 4 D polymerized black hole and study shadow, quasinormal modes, and Hawking radiation. We obtain analytical expressions of photonsphere radius and shadow radius and study their qualitative and quantitative nature of variation with respect to the LQG parameter α . We also show shadows of the black hole for various values of α . Our study reveals that both radii increase with an increase in the parameter value. We, then, study quasinormal modes for scalar and electromagnetic perturbations using the 6th order WKB method. Our study reveals that the LQG parameter impacts quasinormal modes. We observe that the oscillation of gravitational wave (GW) and decay rate decrease as α increases. At the same time, the error associated with the 6th order WKB method increases with an increase in α . The ringdown waveform for electromagnetic and scalar perturbations is shown. We also study greybody bounds, power spectrum, and sparsity of Hawking radiation. Greybody bounds for electromagnetic perturbations do not depend on α . For scalar perturbation, greybody bounds increase as the LQG parameter increases, but the variation with α is very small. The peak of the power spectrum as well as total power emitted decrease as we increase the value of α . Also, the sparsity of Hawking radiation gets significantly impacted by quantum correction. Finally, we obtain the area spectrum of the black hole. It is found to be significantly different than that for the Schwarzschild black hole.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-023-12123-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4457-8683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6052
ispartof The European physical journal. C, Particles and fields, 2023-10, Vol.83 (10), p.952-16, Article 952
issn 1434-6052
1434-6044
1434-6052
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e36bb095fa34480aad1f861b5a337f46
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Analysis
Astronomy
Astrophysics and Cosmology
Black holes
Decay rate
Electromagnetism
Elementary Particles
Gravitational waves
Hadrons
Hawking radiation
Heavy Ions
Mathematical analysis
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Parameters
Perturbation
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum gravity
Radiation
Regular Article - Theoretical Physics
Shadows
Sparsity
String Theory
Waveforms
title Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shadow,%20quasinormal%20modes,%20greybody%20bounds,%20and%20Hawking%20sparsity%20of%20loop%20quantum%20gravity%20motivated%20non-rotating%20black%20hole&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Jha,%20Sohan%20Kumar&rft.date=2023-10-01&rft.volume=83&rft.issue=10&rft.spage=952&rft.epage=16&rft.pages=952-16&rft.artnum=952&rft.issn=1434-6052&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-023-12123-4&rft_dat=%3Cgale_doaj_%3EA770145176%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2880572527&rft_id=info:pmid/&rft_galeid=A770145176&rfr_iscdi=true