Loading…
Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole
We consider loop quantum gravity (LQG) motivated 4 D polymerized black hole and study shadow, quasinormal modes, and Hawking radiation. We obtain analytical expressions of photonsphere radius and shadow radius and study their qualitative and quantitative nature of variation with respect to the LQG p...
Saved in:
Published in: | The European physical journal. C, Particles and fields Particles and fields, 2023-10, Vol.83 (10), p.952-16, Article 952 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3 |
container_end_page | 16 |
container_issue | 10 |
container_start_page | 952 |
container_title | The European physical journal. C, Particles and fields |
container_volume | 83 |
creator | Jha, Sohan Kumar |
description | We consider loop quantum gravity (LQG) motivated 4
D
polymerized black hole and study shadow, quasinormal modes, and Hawking radiation. We obtain analytical expressions of photonsphere radius and shadow radius and study their qualitative and quantitative nature of variation with respect to the LQG parameter
α
. We also show shadows of the black hole for various values of
α
. Our study reveals that both radii increase with an increase in the parameter value. We, then, study quasinormal modes for scalar and electromagnetic perturbations using the 6th order WKB method. Our study reveals that the LQG parameter impacts quasinormal modes. We observe that the oscillation of gravitational wave (GW) and decay rate decrease as
α
increases. At the same time, the error associated with the 6th order WKB method increases with an increase in
α
. The ringdown waveform for electromagnetic and scalar perturbations is shown. We also study greybody bounds, power spectrum, and sparsity of Hawking radiation. Greybody bounds for electromagnetic perturbations do not depend on
α
. For scalar perturbation, greybody bounds increase as the LQG parameter increases, but the variation with
α
is very small. The peak of the power spectrum as well as total power emitted decrease as we increase the value of
α
. Also, the sparsity of Hawking radiation gets significantly impacted by quantum correction. Finally, we obtain the area spectrum of the black hole. It is found to be significantly different than that for the Schwarzschild black hole. |
doi_str_mv | 10.1140/epjc/s10052-023-12123-4 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e36bb095fa34480aad1f861b5a337f46</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A770145176</galeid><doaj_id>oai_doaj_org_article_e36bb095fa34480aad1f861b5a337f46</doaj_id><sourcerecordid>A770145176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3</originalsourceid><addsrcrecordid>eNqFkl9r1jAYxYsoOKefwYJXwrrlX5v2cgznXhgITq_Dkybp8q5NuiTdfP30pquou5JAEk7O7_AETlG8x-gUY4bO9LzvzyJGqCYVIrTCBOedvSiOMKOsarL-8p_76-JNjHuEEGGoPSp-3tyC8o8n5f0C0TofJhjLySsdT8oh6IP06lBKvziVBXCqvILHO-uGMs4Qok2H0pty9H5eA1xapkzBw6pPPtkHSFqVzrsq-ARp5eQI_V1560f9tnhlYIz63e_zuPh--enbxVV1_eXz7uL8uuprQlKlcAOqkcAZ6zoiCTedwbLhdcPalkvaKI7XN9OBZm1PCWEEiKR93UmujaHHxW7LVR72Yg52gnAQHqx4EnwYBIRk-1ELTRspUVcboIy1CEBh0zZY1kApN6zJWR-2rDn4-0XHJPZ-CS6PL0jbopqTmvDsOt1cA-RQ64xPAfq8lJ5s7502NuvnnCPMaszX2I_PgOxJ-kcaYIlR7G6-PvfyzdsHH2PQ5s-XMBJrI8TaCLE1QuRGiKdGCJbJdiNjJtygw9_h_4f-AusnvJU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2880572527</pqid></control><display><type>article</type><title>Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Jha, Sohan Kumar</creator><creatorcontrib>Jha, Sohan Kumar</creatorcontrib><description>We consider loop quantum gravity (LQG) motivated 4
D
polymerized black hole and study shadow, quasinormal modes, and Hawking radiation. We obtain analytical expressions of photonsphere radius and shadow radius and study their qualitative and quantitative nature of variation with respect to the LQG parameter
α
. We also show shadows of the black hole for various values of
α
. Our study reveals that both radii increase with an increase in the parameter value. We, then, study quasinormal modes for scalar and electromagnetic perturbations using the 6th order WKB method. Our study reveals that the LQG parameter impacts quasinormal modes. We observe that the oscillation of gravitational wave (GW) and decay rate decrease as
α
increases. At the same time, the error associated with the 6th order WKB method increases with an increase in
α
. The ringdown waveform for electromagnetic and scalar perturbations is shown. We also study greybody bounds, power spectrum, and sparsity of Hawking radiation. Greybody bounds for electromagnetic perturbations do not depend on
α
. For scalar perturbation, greybody bounds increase as the LQG parameter increases, but the variation with
α
is very small. The peak of the power spectrum as well as total power emitted decrease as we increase the value of
α
. Also, the sparsity of Hawking radiation gets significantly impacted by quantum correction. Finally, we obtain the area spectrum of the black hole. It is found to be significantly different than that for the Schwarzschild black hole.</description><identifier>ISSN: 1434-6052</identifier><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-023-12123-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Astronomy ; Astrophysics and Cosmology ; Black holes ; Decay rate ; Electromagnetism ; Elementary Particles ; Gravitational waves ; Hadrons ; Hawking radiation ; Heavy Ions ; Mathematical analysis ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Parameters ; Perturbation ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum gravity ; Radiation ; Regular Article - Theoretical Physics ; Shadows ; Sparsity ; String Theory ; Waveforms</subject><ispartof>The European physical journal. C, Particles and fields, 2023-10, Vol.83 (10), p.952-16, Article 952</ispartof><rights>The Author(s) 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3</citedby><cites>FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3</cites><orcidid>0000-0003-4457-8683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2880572527/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2880572527?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Jha, Sohan Kumar</creatorcontrib><title>Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>We consider loop quantum gravity (LQG) motivated 4
D
polymerized black hole and study shadow, quasinormal modes, and Hawking radiation. We obtain analytical expressions of photonsphere radius and shadow radius and study their qualitative and quantitative nature of variation with respect to the LQG parameter
α
. We also show shadows of the black hole for various values of
α
. Our study reveals that both radii increase with an increase in the parameter value. We, then, study quasinormal modes for scalar and electromagnetic perturbations using the 6th order WKB method. Our study reveals that the LQG parameter impacts quasinormal modes. We observe that the oscillation of gravitational wave (GW) and decay rate decrease as
α
increases. At the same time, the error associated with the 6th order WKB method increases with an increase in
α
. The ringdown waveform for electromagnetic and scalar perturbations is shown. We also study greybody bounds, power spectrum, and sparsity of Hawking radiation. Greybody bounds for electromagnetic perturbations do not depend on
α
. For scalar perturbation, greybody bounds increase as the LQG parameter increases, but the variation with
α
is very small. The peak of the power spectrum as well as total power emitted decrease as we increase the value of
α
. Also, the sparsity of Hawking radiation gets significantly impacted by quantum correction. Finally, we obtain the area spectrum of the black hole. It is found to be significantly different than that for the Schwarzschild black hole.</description><subject>Analysis</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Black holes</subject><subject>Decay rate</subject><subject>Electromagnetism</subject><subject>Elementary Particles</subject><subject>Gravitational waves</subject><subject>Hadrons</subject><subject>Hawking radiation</subject><subject>Heavy Ions</subject><subject>Mathematical analysis</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum gravity</subject><subject>Radiation</subject><subject>Regular Article - Theoretical Physics</subject><subject>Shadows</subject><subject>Sparsity</subject><subject>String Theory</subject><subject>Waveforms</subject><issn>1434-6052</issn><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkl9r1jAYxYsoOKefwYJXwrrlX5v2cgznXhgITq_Dkybp8q5NuiTdfP30pquou5JAEk7O7_AETlG8x-gUY4bO9LzvzyJGqCYVIrTCBOedvSiOMKOsarL-8p_76-JNjHuEEGGoPSp-3tyC8o8n5f0C0TofJhjLySsdT8oh6IP06lBKvziVBXCqvILHO-uGMs4Qok2H0pty9H5eA1xapkzBw6pPPtkHSFqVzrsq-ARp5eQI_V1560f9tnhlYIz63e_zuPh--enbxVV1_eXz7uL8uuprQlKlcAOqkcAZ6zoiCTedwbLhdcPalkvaKI7XN9OBZm1PCWEEiKR93UmujaHHxW7LVR72Yg52gnAQHqx4EnwYBIRk-1ELTRspUVcboIy1CEBh0zZY1kApN6zJWR-2rDn4-0XHJPZ-CS6PL0jbopqTmvDsOt1cA-RQ64xPAfq8lJ5s7502NuvnnCPMaszX2I_PgOxJ-kcaYIlR7G6-PvfyzdsHH2PQ5s-XMBJrI8TaCLE1QuRGiKdGCJbJdiNjJtygw9_h_4f-AusnvJU</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Jha, Sohan Kumar</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4457-8683</orcidid></search><sort><creationdate>20231001</creationdate><title>Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole</title><author>Jha, Sohan Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Black holes</topic><topic>Decay rate</topic><topic>Electromagnetism</topic><topic>Elementary Particles</topic><topic>Gravitational waves</topic><topic>Hadrons</topic><topic>Hawking radiation</topic><topic>Heavy Ions</topic><topic>Mathematical analysis</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum gravity</topic><topic>Radiation</topic><topic>Regular Article - Theoretical Physics</topic><topic>Shadows</topic><topic>Sparsity</topic><topic>String Theory</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Sohan Kumar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jha, Sohan Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>83</volume><issue>10</issue><spage>952</spage><epage>16</epage><pages>952-16</pages><artnum>952</artnum><issn>1434-6052</issn><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>We consider loop quantum gravity (LQG) motivated 4
D
polymerized black hole and study shadow, quasinormal modes, and Hawking radiation. We obtain analytical expressions of photonsphere radius and shadow radius and study their qualitative and quantitative nature of variation with respect to the LQG parameter
α
. We also show shadows of the black hole for various values of
α
. Our study reveals that both radii increase with an increase in the parameter value. We, then, study quasinormal modes for scalar and electromagnetic perturbations using the 6th order WKB method. Our study reveals that the LQG parameter impacts quasinormal modes. We observe that the oscillation of gravitational wave (GW) and decay rate decrease as
α
increases. At the same time, the error associated with the 6th order WKB method increases with an increase in
α
. The ringdown waveform for electromagnetic and scalar perturbations is shown. We also study greybody bounds, power spectrum, and sparsity of Hawking radiation. Greybody bounds for electromagnetic perturbations do not depend on
α
. For scalar perturbation, greybody bounds increase as the LQG parameter increases, but the variation with
α
is very small. The peak of the power spectrum as well as total power emitted decrease as we increase the value of
α
. Also, the sparsity of Hawking radiation gets significantly impacted by quantum correction. Finally, we obtain the area spectrum of the black hole. It is found to be significantly different than that for the Schwarzschild black hole.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-023-12123-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4457-8683</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6052 |
ispartof | The European physical journal. C, Particles and fields, 2023-10, Vol.83 (10), p.952-16, Article 952 |
issn | 1434-6052 1434-6044 1434-6052 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e36bb095fa34480aad1f861b5a337f46 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Analysis Astronomy Astrophysics and Cosmology Black holes Decay rate Electromagnetism Elementary Particles Gravitational waves Hadrons Hawking radiation Heavy Ions Mathematical analysis Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Parameters Perturbation Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum gravity Radiation Regular Article - Theoretical Physics Shadows Sparsity String Theory Waveforms |
title | Shadow, quasinormal modes, greybody bounds, and Hawking sparsity of loop quantum gravity motivated non-rotating black hole |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shadow,%20quasinormal%20modes,%20greybody%20bounds,%20and%20Hawking%20sparsity%20of%20loop%20quantum%20gravity%20motivated%20non-rotating%20black%20hole&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Jha,%20Sohan%20Kumar&rft.date=2023-10-01&rft.volume=83&rft.issue=10&rft.spage=952&rft.epage=16&rft.pages=952-16&rft.artnum=952&rft.issn=1434-6052&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-023-12123-4&rft_dat=%3Cgale_doaj_%3EA770145176%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-d16ad6ba744992b27f9f1b67564887b36d717449f9ae48c32242a2b3c59b7eff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2880572527&rft_id=info:pmid/&rft_galeid=A770145176&rfr_iscdi=true |