Loading…
The Danish National Patient Registry: a review of content, data quality, and research potential
The Danish National Patient Registry (DNPR) is one of the world's oldest nationwide hospital registries and is used extensively for research. Many studies have validated algorithms for identifying health events in the DNPR, but the reports are fragmented and no overview exists. To review the co...
Saved in:
Published in: | Clinical epidemiology 2015-01, Vol.7 (default), p.449-490 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Danish National Patient Registry (DNPR) is one of the world's oldest nationwide hospital registries and is used extensively for research. Many studies have validated algorithms for identifying health events in the DNPR, but the reports are fragmented and no overview exists.
To review the content, data quality, and research potential of the DNPR.
We examined the setting, history, aims, content, and classification systems of the DNPR. We searched PubMed and the Danish Medical Journal to create a bibliography of validation studies. We included also studies that were referenced in retrieved papers or known to us beforehand. Methodological considerations related to DNPR data were reviewed.
During 1977-2012, the DNPR registered 8,085,603 persons, accounting for 7,268,857 inpatient, 5,953,405 outpatient, and 5,097,300 emergency department contacts. The DNPR provides nationwide longitudinal registration of detailed administrative and clinical data. It has recorded information on all patients discharged from Danish nonpsychiatric hospitals since 1977 and on psychiatric inpatients and emergency department and outpatient specialty clinic contacts since 1995. For each patient contact, one primary and optional secondary diagnoses are recorded according to the International Classification of Diseases. The DNPR provides a data source to identify diseases, examinations, certain in-hospital medical treatments, and surgical procedures. Long-term temporal trends in hospitalization and treatment rates can be studied. The positive predictive values of diseases and treatments vary widely ( |
---|---|
ISSN: | 1179-1349 1179-1349 |
DOI: | 10.2147/clep.s91125 |