Loading…

All-Solid-State Carbon Black Paste Electrodes Modified by Poly(3-octylthiophene-2,5-diyl) and Transition Metal Oxides for Determination of Nitrate Ions

This paper presents new paste ion-selective electrodes for the determination of nitrate ions in soil. The pastes used in the construction of the electrodes are based on carbon black doped with transition metal oxides: ruthenium, iridium, and polymer-poly(3-octylthiophene-2,5-diyl). The proposed past...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2023-05, Vol.28 (11), p.4313
Main Authors: Niemiec, Barbara, Piech, Robert, Paczosa-Bator, Beata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents new paste ion-selective electrodes for the determination of nitrate ions in soil. The pastes used in the construction of the electrodes are based on carbon black doped with transition metal oxides: ruthenium, iridium, and polymer-poly(3-octylthiophene-2,5-diyl). The proposed pastes were electrically characterized by chronopotentiometry and broadly characterized potentiometrically. The tests showed that the metal admixtures used increased the electric capacitance of the pastes to 470 μF for the ruthenium-doped paste. The polymer additive used positively affects the stability of the electrode response. All tested electrodes were characterized by a sensitivity close to that of the Nernst equation. In addition, the proposed electrodes have a measurement range of 10 to 10 M NO ions. They are impervious to light conditions and pH changes in the range of 2-10. The utility of the electrodes presented in this work was demonstrated during measurements directly in soil samples. The electrodes presented in this paper show satisfactory metrological parameters and can be successfully used for determinations in real samples.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28114313