Loading…

Modeling Shapes for Pattern Recognition: A Simple Low-Cost Spline-based Approach

We present a simple procedure for modeling shapes and trajectories of points using cubic polynomial splines. The procedure may prove useful for researchers working in the field of pattern recognition that are in the search of a simple functional representation for shapes and which are not particular...

Full description

Saved in:
Bibliographic Details
Published in:Advances in electrical and computer engineering 2008-04, Vol.8 (1), p.67-71
Main Authors: VATAVU, R. D., PENTIUC, S. G., GRISONI, L., CHAILLOU, C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-aac997c749de0c3da680f5a5d574a40bb5d9f563e4e296d4d3939ebeb3809d1a3
cites
container_end_page 71
container_issue 1
container_start_page 67
container_title Advances in electrical and computer engineering
container_volume 8
creator VATAVU, R. D.
PENTIUC, S. G.
GRISONI, L.
CHAILLOU, C.
description We present a simple procedure for modeling shapes and trajectories of points using cubic polynomial splines. The procedure may prove useful for researchers working in the field of pattern recognition that are in the search of a simple functional representation for shapes and which are not particularly interested in diving into the hightheoretical aspects of more complex representations. The use of splines brings in a few advantages with regards to data dimensionality, speed and accuracy of processing, with minimal effort required for the implementation part. We describe several algorithms for data reduction, spline creation and query for which we provide pseudo code procedures in order to demonstrate the ease of implementation. We equally provide measurements on the approximation error and rate of data reduction.
doi_str_mv 10.4316/aece.2008.01012
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e3a370de06e74302a803dac8863e31c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e3a370de06e74302a803dac8863e31c1</doaj_id><sourcerecordid>oai_doaj_org_article_e3a370de06e74302a803dac8863e31c1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-aac997c749de0c3da680f5a5d574a40bb5d9f563e4e296d4d3939ebeb3809d1a3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOauvc0f6JY0aZN4N4Yfg4nD6XU4TU63SteUpCD-e7tNvHoPL5znhYeQe87mUvByAehwnjOm54wznl-RCddSZqpk7Hq8C51nSsrilsxSaiompcp1LsoJ2b4Gj23T7enuAD0mWodItzAMGDv6ji7su2ZoQvdAl3TXHPsW6SZ8Z6uQBrrrx0fMKkjo6bLvYwB3uCM3NbQJZ385JZ9Pjx-rl2zz9rxeLTeZE1IPGYAzRjkljUfmhIdSs7qAwhdKgmRVVXhTF6VAibkpvfTCCIMVVkIz4zmIKVlfuD7Al-1jc4T4YwM09lyEuLcQh8a1aFGAUGzcKVFJwXLQbBx0Wo94wR0fWYsLy8WQUsT6n8eZPfm1J7_25Nee_Ypf5mVt5A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Shapes for Pattern Recognition: A Simple Low-Cost Spline-based Approach</title><source>IngentaConnect Journals</source><creator>VATAVU, R. D. ; PENTIUC, S. G. ; GRISONI, L. ; CHAILLOU, C.</creator><creatorcontrib>VATAVU, R. D. ; PENTIUC, S. G. ; GRISONI, L. ; CHAILLOU, C.</creatorcontrib><description>We present a simple procedure for modeling shapes and trajectories of points using cubic polynomial splines. The procedure may prove useful for researchers working in the field of pattern recognition that are in the search of a simple functional representation for shapes and which are not particularly interested in diving into the hightheoretical aspects of more complex representations. The use of splines brings in a few advantages with regards to data dimensionality, speed and accuracy of processing, with minimal effort required for the implementation part. We describe several algorithms for data reduction, spline creation and query for which we provide pseudo code procedures in order to demonstrate the ease of implementation. We equally provide measurements on the approximation error and rate of data reduction.</description><identifier>ISSN: 1582-7445</identifier><identifier>EISSN: 1844-7600</identifier><identifier>DOI: 10.4316/aece.2008.01012</identifier><language>eng</language><publisher>Stefan cel Mare University of Suceava</publisher><subject>algorithms ; approximation error ; cubic polynomial ; curves ; Haussdorff distance ; pattern recognition ; shape modeling ; spline</subject><ispartof>Advances in electrical and computer engineering, 2008-04, Vol.8 (1), p.67-71</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-aac997c749de0c3da680f5a5d574a40bb5d9f563e4e296d4d3939ebeb3809d1a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>VATAVU, R. D.</creatorcontrib><creatorcontrib>PENTIUC, S. G.</creatorcontrib><creatorcontrib>GRISONI, L.</creatorcontrib><creatorcontrib>CHAILLOU, C.</creatorcontrib><title>Modeling Shapes for Pattern Recognition: A Simple Low-Cost Spline-based Approach</title><title>Advances in electrical and computer engineering</title><description>We present a simple procedure for modeling shapes and trajectories of points using cubic polynomial splines. The procedure may prove useful for researchers working in the field of pattern recognition that are in the search of a simple functional representation for shapes and which are not particularly interested in diving into the hightheoretical aspects of more complex representations. The use of splines brings in a few advantages with regards to data dimensionality, speed and accuracy of processing, with minimal effort required for the implementation part. We describe several algorithms for data reduction, spline creation and query for which we provide pseudo code procedures in order to demonstrate the ease of implementation. We equally provide measurements on the approximation error and rate of data reduction.</description><subject>algorithms</subject><subject>approximation error</subject><subject>cubic polynomial</subject><subject>curves</subject><subject>Haussdorff distance</subject><subject>pattern recognition</subject><subject>shape modeling</subject><subject>spline</subject><issn>1582-7445</issn><issn>1844-7600</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kF1LwzAUhoMoOOauvc0f6JY0aZN4N4Yfg4nD6XU4TU63SteUpCD-e7tNvHoPL5znhYeQe87mUvByAehwnjOm54wznl-RCddSZqpk7Hq8C51nSsrilsxSaiompcp1LsoJ2b4Gj23T7enuAD0mWodItzAMGDv6ji7su2ZoQvdAl3TXHPsW6SZ8Z6uQBrrrx0fMKkjo6bLvYwB3uCM3NbQJZ385JZ9Pjx-rl2zz9rxeLTeZE1IPGYAzRjkljUfmhIdSs7qAwhdKgmRVVXhTF6VAibkpvfTCCIMVVkIz4zmIKVlfuD7Al-1jc4T4YwM09lyEuLcQh8a1aFGAUGzcKVFJwXLQbBx0Wo94wR0fWYsLy8WQUsT6n8eZPfm1J7_25Nee_Ypf5mVt5A</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>VATAVU, R. D.</creator><creator>PENTIUC, S. G.</creator><creator>GRISONI, L.</creator><creator>CHAILLOU, C.</creator><general>Stefan cel Mare University of Suceava</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>200804</creationdate><title>Modeling Shapes for Pattern Recognition: A Simple Low-Cost Spline-based Approach</title><author>VATAVU, R. D. ; PENTIUC, S. G. ; GRISONI, L. ; CHAILLOU, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-aac997c749de0c3da680f5a5d574a40bb5d9f563e4e296d4d3939ebeb3809d1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>algorithms</topic><topic>approximation error</topic><topic>cubic polynomial</topic><topic>curves</topic><topic>Haussdorff distance</topic><topic>pattern recognition</topic><topic>shape modeling</topic><topic>spline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VATAVU, R. D.</creatorcontrib><creatorcontrib>PENTIUC, S. G.</creatorcontrib><creatorcontrib>GRISONI, L.</creatorcontrib><creatorcontrib>CHAILLOU, C.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in electrical and computer engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VATAVU, R. D.</au><au>PENTIUC, S. G.</au><au>GRISONI, L.</au><au>CHAILLOU, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Shapes for Pattern Recognition: A Simple Low-Cost Spline-based Approach</atitle><jtitle>Advances in electrical and computer engineering</jtitle><date>2008-04</date><risdate>2008</risdate><volume>8</volume><issue>1</issue><spage>67</spage><epage>71</epage><pages>67-71</pages><issn>1582-7445</issn><eissn>1844-7600</eissn><abstract>We present a simple procedure for modeling shapes and trajectories of points using cubic polynomial splines. The procedure may prove useful for researchers working in the field of pattern recognition that are in the search of a simple functional representation for shapes and which are not particularly interested in diving into the hightheoretical aspects of more complex representations. The use of splines brings in a few advantages with regards to data dimensionality, speed and accuracy of processing, with minimal effort required for the implementation part. We describe several algorithms for data reduction, spline creation and query for which we provide pseudo code procedures in order to demonstrate the ease of implementation. We equally provide measurements on the approximation error and rate of data reduction.</abstract><pub>Stefan cel Mare University of Suceava</pub><doi>10.4316/aece.2008.01012</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-7445
ispartof Advances in electrical and computer engineering, 2008-04, Vol.8 (1), p.67-71
issn 1582-7445
1844-7600
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e3a370de06e74302a803dac8863e31c1
source IngentaConnect Journals
subjects algorithms
approximation error
cubic polynomial
curves
Haussdorff distance
pattern recognition
shape modeling
spline
title Modeling Shapes for Pattern Recognition: A Simple Low-Cost Spline-based Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Shapes%20for%20Pattern%20Recognition:%20A%20Simple%20Low-Cost%20Spline-based%20Approach&rft.jtitle=Advances%20in%20electrical%20and%20computer%20engineering&rft.au=VATAVU,%20R.%20D.&rft.date=2008-04&rft.volume=8&rft.issue=1&rft.spage=67&rft.epage=71&rft.pages=67-71&rft.issn=1582-7445&rft.eissn=1844-7600&rft_id=info:doi/10.4316/aece.2008.01012&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e3a370de06e74302a803dac8863e31c1%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-aac997c749de0c3da680f5a5d574a40bb5d9f563e4e296d4d3939ebeb3809d1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true