Loading…

Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures

Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate cha...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-09, Vol.12 (1), p.5742-5742, Article 5742
Main Authors: Lee, Kyung Eun, Clemens, Steven C., Kubota, Yoshimi, Timmermann, Axel, Holbourn, Ann, Yeh, Sang-Wook, Bae, Si Woong, Ko, Tae Wook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443
cites cdi_FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443
container_end_page 5742
container_issue 1
container_start_page 5742
container_title Nature communications
container_volume 12
creator Lee, Kyung Eun
Clemens, Steven C.
Kubota, Yoshimi
Timmermann, Axel
Holbourn, Ann
Yeh, Sang-Wook
Bae, Si Woong
Ko, Tae Wook
description Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and Globigerinoides ruber Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO 2 . Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO 2 concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity. How temperatures at different seasons differ in response to different forcings is not well known. Here, the authors reconstruct annual and seasonal sea surface temperatures in the East China Sea and show that they react differently to CO2 and insolation forcing on glacial-interglacial timescales.
doi_str_mv 10.1038/s41467-021-26051-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e3b90491ea9a4529ad29be14961b87dd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e3b90491ea9a4529ad29be14961b87dd</doaj_id><sourcerecordid>2578778109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443</originalsourceid><addsrcrecordid>eNp9kkuLFDEUhQtRnGGcP-CqwI2b0rwfG0EaHwMNI6LrcCt101aTrrRJldD_3kzXMDouzCb35p7zkYTTNC8peUMJN2-LoELpjjDaMUUk7U5PmktGBO2oZvzpX_VFc13KntTFLTVCPG8uuJCWG0YvG_iaIpY2hXacSoowj2lqQ8p-nHYtTEO7uWUPfR1tYcb2S8SxzMnjhG1BKGmCeFe0ZckBPLYzHo6YYV4ylhfNswCx4PX9ftV8__jh2-Zzt739dLN5v-28NHzuqILQa1Agexo86YVC3xuFMvReUB8UC3SQggNnZJCgBi08kUYbgUopIfhVc7NyhwR7d8zjAfLJJRjd-SDlnYM8jz6iQ95bIixFsCAkszAw2yMVVtHe6GGorHcr67j0BxzqQ-cM8RH08WQaf7hd-uWMMIIZXgGv7wE5_VywzO4wFo8xwoRpKY5JbbQ2lNgqffWPdJ-WXH_0rNKWKqJkVbFV5XMqJWN4uAwl7i4Qbg2Eq4Fw50C4UzXx1VSqeNph_oP-j-s3jum4Sw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577916065</pqid></control><display><type>article</type><title>Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures</title><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lee, Kyung Eun ; Clemens, Steven C. ; Kubota, Yoshimi ; Timmermann, Axel ; Holbourn, Ann ; Yeh, Sang-Wook ; Bae, Si Woong ; Ko, Tae Wook</creator><creatorcontrib>Lee, Kyung Eun ; Clemens, Steven C. ; Kubota, Yoshimi ; Timmermann, Axel ; Holbourn, Ann ; Yeh, Sang-Wook ; Bae, Si Woong ; Ko, Tae Wook</creatorcontrib><description>Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and Globigerinoides ruber Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO 2 . Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO 2 concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity. How temperatures at different seasons differ in response to different forcings is not well known. Here, the authors reconstruct annual and seasonal sea surface temperatures in the East China Sea and show that they react differently to CO2 and insolation forcing on glacial-interglacial timescales.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-26051-y</identifier><identifier>PMID: 34593821</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/2738 ; 704/106/413 ; Carbon dioxide ; Carbon dioxide concentration ; Climate change ; Climate variability ; Glacial periods ; Greenhouse gases ; Humanities and Social Sciences ; Ice sheets ; Insolation ; multidisciplinary ; Paleoclimate ; Pleistocene ; Radiative forcing ; Science ; Science (multidisciplinary) ; Sea surface temperature ; Seasonal variations ; Summer ; Surface temperature ; Temperature ; Temperature gradients ; Winter</subject><ispartof>Nature communications, 2021-09, Vol.12 (1), p.5742-5742, Article 5742</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443</citedby><cites>FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443</cites><orcidid>0000-0003-4549-1686 ; 0000-0002-1136-7815 ; 0000-0002-1548-9991 ; 0000-0002-3167-0862 ; 0000-0002-6366-6091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2577916065/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2577916065?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Lee, Kyung Eun</creatorcontrib><creatorcontrib>Clemens, Steven C.</creatorcontrib><creatorcontrib>Kubota, Yoshimi</creatorcontrib><creatorcontrib>Timmermann, Axel</creatorcontrib><creatorcontrib>Holbourn, Ann</creatorcontrib><creatorcontrib>Yeh, Sang-Wook</creatorcontrib><creatorcontrib>Bae, Si Woong</creatorcontrib><creatorcontrib>Ko, Tae Wook</creatorcontrib><title>Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and Globigerinoides ruber Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO 2 . Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO 2 concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity. How temperatures at different seasons differ in response to different forcings is not well known. Here, the authors reconstruct annual and seasonal sea surface temperatures in the East China Sea and show that they react differently to CO2 and insolation forcing on glacial-interglacial timescales.</description><subject>704/106/2738</subject><subject>704/106/413</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Climate change</subject><subject>Climate variability</subject><subject>Glacial periods</subject><subject>Greenhouse gases</subject><subject>Humanities and Social Sciences</subject><subject>Ice sheets</subject><subject>Insolation</subject><subject>multidisciplinary</subject><subject>Paleoclimate</subject><subject>Pleistocene</subject><subject>Radiative forcing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sea surface temperature</subject><subject>Seasonal variations</subject><subject>Summer</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Winter</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kkuLFDEUhQtRnGGcP-CqwI2b0rwfG0EaHwMNI6LrcCt101aTrrRJldD_3kzXMDouzCb35p7zkYTTNC8peUMJN2-LoELpjjDaMUUk7U5PmktGBO2oZvzpX_VFc13KntTFLTVCPG8uuJCWG0YvG_iaIpY2hXacSoowj2lqQ8p-nHYtTEO7uWUPfR1tYcb2S8SxzMnjhG1BKGmCeFe0ZckBPLYzHo6YYV4ylhfNswCx4PX9ftV8__jh2-Zzt739dLN5v-28NHzuqILQa1Agexo86YVC3xuFMvReUB8UC3SQggNnZJCgBi08kUYbgUopIfhVc7NyhwR7d8zjAfLJJRjd-SDlnYM8jz6iQ95bIixFsCAkszAw2yMVVtHe6GGorHcr67j0BxzqQ-cM8RH08WQaf7hd-uWMMIIZXgGv7wE5_VywzO4wFo8xwoRpKY5JbbQ2lNgqffWPdJ-WXH_0rNKWKqJkVbFV5XMqJWN4uAwl7i4Qbg2Eq4Fw50C4UzXx1VSqeNph_oP-j-s3jum4Sw</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Lee, Kyung Eun</creator><creator>Clemens, Steven C.</creator><creator>Kubota, Yoshimi</creator><creator>Timmermann, Axel</creator><creator>Holbourn, Ann</creator><creator>Yeh, Sang-Wook</creator><creator>Bae, Si Woong</creator><creator>Ko, Tae Wook</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4549-1686</orcidid><orcidid>https://orcid.org/0000-0002-1136-7815</orcidid><orcidid>https://orcid.org/0000-0002-1548-9991</orcidid><orcidid>https://orcid.org/0000-0002-3167-0862</orcidid><orcidid>https://orcid.org/0000-0002-6366-6091</orcidid></search><sort><creationdate>20210930</creationdate><title>Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures</title><author>Lee, Kyung Eun ; Clemens, Steven C. ; Kubota, Yoshimi ; Timmermann, Axel ; Holbourn, Ann ; Yeh, Sang-Wook ; Bae, Si Woong ; Ko, Tae Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/106/2738</topic><topic>704/106/413</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Climate change</topic><topic>Climate variability</topic><topic>Glacial periods</topic><topic>Greenhouse gases</topic><topic>Humanities and Social Sciences</topic><topic>Ice sheets</topic><topic>Insolation</topic><topic>multidisciplinary</topic><topic>Paleoclimate</topic><topic>Pleistocene</topic><topic>Radiative forcing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sea surface temperature</topic><topic>Seasonal variations</topic><topic>Summer</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyung Eun</creatorcontrib><creatorcontrib>Clemens, Steven C.</creatorcontrib><creatorcontrib>Kubota, Yoshimi</creatorcontrib><creatorcontrib>Timmermann, Axel</creatorcontrib><creatorcontrib>Holbourn, Ann</creatorcontrib><creatorcontrib>Yeh, Sang-Wook</creatorcontrib><creatorcontrib>Bae, Si Woong</creatorcontrib><creatorcontrib>Ko, Tae Wook</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyung Eun</au><au>Clemens, Steven C.</au><au>Kubota, Yoshimi</au><au>Timmermann, Axel</au><au>Holbourn, Ann</au><au>Yeh, Sang-Wook</au><au>Bae, Si Woong</au><au>Ko, Tae Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2021-09-30</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>5742</spage><epage>5742</epage><pages>5742-5742</pages><artnum>5742</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and Globigerinoides ruber Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO 2 . Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO 2 concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity. How temperatures at different seasons differ in response to different forcings is not well known. Here, the authors reconstruct annual and seasonal sea surface temperatures in the East China Sea and show that they react differently to CO2 and insolation forcing on glacial-interglacial timescales.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34593821</pmid><doi>10.1038/s41467-021-26051-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4549-1686</orcidid><orcidid>https://orcid.org/0000-0002-1136-7815</orcidid><orcidid>https://orcid.org/0000-0002-1548-9991</orcidid><orcidid>https://orcid.org/0000-0002-3167-0862</orcidid><orcidid>https://orcid.org/0000-0002-6366-6091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-09, Vol.12 (1), p.5742-5742, Article 5742
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e3b90491ea9a4529ad29be14961b87dd
source PubMed Central(OpenAccess); Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 704/106/2738
704/106/413
Carbon dioxide
Carbon dioxide concentration
Climate change
Climate variability
Glacial periods
Greenhouse gases
Humanities and Social Sciences
Ice sheets
Insolation
multidisciplinary
Paleoclimate
Pleistocene
Radiative forcing
Science
Science (multidisciplinary)
Sea surface temperature
Seasonal variations
Summer
Surface temperature
Temperature
Temperature gradients
Winter
title Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roles%20of%20insolation%20forcing%20and%20CO2%20forcing%20on%20Late%20Pleistocene%20seasonal%20sea%20surface%20temperatures&rft.jtitle=Nature%20communications&rft.au=Lee,%20Kyung%20Eun&rft.date=2021-09-30&rft.volume=12&rft.issue=1&rft.spage=5742&rft.epage=5742&rft.pages=5742-5742&rft.artnum=5742&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-26051-y&rft_dat=%3Cproquest_doaj_%3E2578778109%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577916065&rft_id=info:pmid/34593821&rfr_iscdi=true