Loading…
Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures
Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate cha...
Saved in:
Published in: | Nature communications 2021-09, Vol.12 (1), p.5742-5742, Article 5742 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443 |
---|---|
cites | cdi_FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443 |
container_end_page | 5742 |
container_issue | 1 |
container_start_page | 5742 |
container_title | Nature communications |
container_volume | 12 |
creator | Lee, Kyung Eun Clemens, Steven C. Kubota, Yoshimi Timmermann, Axel Holbourn, Ann Yeh, Sang-Wook Bae, Si Woong Ko, Tae Wook |
description | Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and
Globigerinoides ruber
Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO
2
. Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO
2
concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity.
How temperatures at different seasons differ in response to different forcings is not well known. Here, the authors reconstruct annual and seasonal sea surface temperatures in the East China Sea and show that they react differently to CO2 and insolation forcing on glacial-interglacial timescales. |
doi_str_mv | 10.1038/s41467-021-26051-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e3b90491ea9a4529ad29be14961b87dd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e3b90491ea9a4529ad29be14961b87dd</doaj_id><sourcerecordid>2578778109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443</originalsourceid><addsrcrecordid>eNp9kkuLFDEUhQtRnGGcP-CqwI2b0rwfG0EaHwMNI6LrcCt101aTrrRJldD_3kzXMDouzCb35p7zkYTTNC8peUMJN2-LoELpjjDaMUUk7U5PmktGBO2oZvzpX_VFc13KntTFLTVCPG8uuJCWG0YvG_iaIpY2hXacSoowj2lqQ8p-nHYtTEO7uWUPfR1tYcb2S8SxzMnjhG1BKGmCeFe0ZckBPLYzHo6YYV4ylhfNswCx4PX9ftV8__jh2-Zzt739dLN5v-28NHzuqILQa1Agexo86YVC3xuFMvReUB8UC3SQggNnZJCgBi08kUYbgUopIfhVc7NyhwR7d8zjAfLJJRjd-SDlnYM8jz6iQ95bIixFsCAkszAw2yMVVtHe6GGorHcr67j0BxzqQ-cM8RH08WQaf7hd-uWMMIIZXgGv7wE5_VywzO4wFo8xwoRpKY5JbbQ2lNgqffWPdJ-WXH_0rNKWKqJkVbFV5XMqJWN4uAwl7i4Qbg2Eq4Fw50C4UzXx1VSqeNph_oP-j-s3jum4Sw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577916065</pqid></control><display><type>article</type><title>Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures</title><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lee, Kyung Eun ; Clemens, Steven C. ; Kubota, Yoshimi ; Timmermann, Axel ; Holbourn, Ann ; Yeh, Sang-Wook ; Bae, Si Woong ; Ko, Tae Wook</creator><creatorcontrib>Lee, Kyung Eun ; Clemens, Steven C. ; Kubota, Yoshimi ; Timmermann, Axel ; Holbourn, Ann ; Yeh, Sang-Wook ; Bae, Si Woong ; Ko, Tae Wook</creatorcontrib><description>Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and
Globigerinoides ruber
Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO
2
. Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO
2
concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity.
How temperatures at different seasons differ in response to different forcings is not well known. Here, the authors reconstruct annual and seasonal sea surface temperatures in the East China Sea and show that they react differently to CO2 and insolation forcing on glacial-interglacial timescales.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-26051-y</identifier><identifier>PMID: 34593821</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/2738 ; 704/106/413 ; Carbon dioxide ; Carbon dioxide concentration ; Climate change ; Climate variability ; Glacial periods ; Greenhouse gases ; Humanities and Social Sciences ; Ice sheets ; Insolation ; multidisciplinary ; Paleoclimate ; Pleistocene ; Radiative forcing ; Science ; Science (multidisciplinary) ; Sea surface temperature ; Seasonal variations ; Summer ; Surface temperature ; Temperature ; Temperature gradients ; Winter</subject><ispartof>Nature communications, 2021-09, Vol.12 (1), p.5742-5742, Article 5742</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443</citedby><cites>FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443</cites><orcidid>0000-0003-4549-1686 ; 0000-0002-1136-7815 ; 0000-0002-1548-9991 ; 0000-0002-3167-0862 ; 0000-0002-6366-6091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2577916065/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2577916065?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Lee, Kyung Eun</creatorcontrib><creatorcontrib>Clemens, Steven C.</creatorcontrib><creatorcontrib>Kubota, Yoshimi</creatorcontrib><creatorcontrib>Timmermann, Axel</creatorcontrib><creatorcontrib>Holbourn, Ann</creatorcontrib><creatorcontrib>Yeh, Sang-Wook</creatorcontrib><creatorcontrib>Bae, Si Woong</creatorcontrib><creatorcontrib>Ko, Tae Wook</creatorcontrib><title>Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and
Globigerinoides ruber
Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO
2
. Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO
2
concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity.
How temperatures at different seasons differ in response to different forcings is not well known. Here, the authors reconstruct annual and seasonal sea surface temperatures in the East China Sea and show that they react differently to CO2 and insolation forcing on glacial-interglacial timescales.</description><subject>704/106/2738</subject><subject>704/106/413</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Climate change</subject><subject>Climate variability</subject><subject>Glacial periods</subject><subject>Greenhouse gases</subject><subject>Humanities and Social Sciences</subject><subject>Ice sheets</subject><subject>Insolation</subject><subject>multidisciplinary</subject><subject>Paleoclimate</subject><subject>Pleistocene</subject><subject>Radiative forcing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sea surface temperature</subject><subject>Seasonal variations</subject><subject>Summer</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Winter</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kkuLFDEUhQtRnGGcP-CqwI2b0rwfG0EaHwMNI6LrcCt101aTrrRJldD_3kzXMDouzCb35p7zkYTTNC8peUMJN2-LoELpjjDaMUUk7U5PmktGBO2oZvzpX_VFc13KntTFLTVCPG8uuJCWG0YvG_iaIpY2hXacSoowj2lqQ8p-nHYtTEO7uWUPfR1tYcb2S8SxzMnjhG1BKGmCeFe0ZckBPLYzHo6YYV4ylhfNswCx4PX9ftV8__jh2-Zzt739dLN5v-28NHzuqILQa1Agexo86YVC3xuFMvReUB8UC3SQggNnZJCgBi08kUYbgUopIfhVc7NyhwR7d8zjAfLJJRjd-SDlnYM8jz6iQ95bIixFsCAkszAw2yMVVtHe6GGorHcr67j0BxzqQ-cM8RH08WQaf7hd-uWMMIIZXgGv7wE5_VywzO4wFo8xwoRpKY5JbbQ2lNgqffWPdJ-WXH_0rNKWKqJkVbFV5XMqJWN4uAwl7i4Qbg2Eq4Fw50C4UzXx1VSqeNph_oP-j-s3jum4Sw</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Lee, Kyung Eun</creator><creator>Clemens, Steven C.</creator><creator>Kubota, Yoshimi</creator><creator>Timmermann, Axel</creator><creator>Holbourn, Ann</creator><creator>Yeh, Sang-Wook</creator><creator>Bae, Si Woong</creator><creator>Ko, Tae Wook</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4549-1686</orcidid><orcidid>https://orcid.org/0000-0002-1136-7815</orcidid><orcidid>https://orcid.org/0000-0002-1548-9991</orcidid><orcidid>https://orcid.org/0000-0002-3167-0862</orcidid><orcidid>https://orcid.org/0000-0002-6366-6091</orcidid></search><sort><creationdate>20210930</creationdate><title>Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures</title><author>Lee, Kyung Eun ; Clemens, Steven C. ; Kubota, Yoshimi ; Timmermann, Axel ; Holbourn, Ann ; Yeh, Sang-Wook ; Bae, Si Woong ; Ko, Tae Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/106/2738</topic><topic>704/106/413</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Climate change</topic><topic>Climate variability</topic><topic>Glacial periods</topic><topic>Greenhouse gases</topic><topic>Humanities and Social Sciences</topic><topic>Ice sheets</topic><topic>Insolation</topic><topic>multidisciplinary</topic><topic>Paleoclimate</topic><topic>Pleistocene</topic><topic>Radiative forcing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sea surface temperature</topic><topic>Seasonal variations</topic><topic>Summer</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyung Eun</creatorcontrib><creatorcontrib>Clemens, Steven C.</creatorcontrib><creatorcontrib>Kubota, Yoshimi</creatorcontrib><creatorcontrib>Timmermann, Axel</creatorcontrib><creatorcontrib>Holbourn, Ann</creatorcontrib><creatorcontrib>Yeh, Sang-Wook</creatorcontrib><creatorcontrib>Bae, Si Woong</creatorcontrib><creatorcontrib>Ko, Tae Wook</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyung Eun</au><au>Clemens, Steven C.</au><au>Kubota, Yoshimi</au><au>Timmermann, Axel</au><au>Holbourn, Ann</au><au>Yeh, Sang-Wook</au><au>Bae, Si Woong</au><au>Ko, Tae Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2021-09-30</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>5742</spage><epage>5742</epage><pages>5742-5742</pages><artnum>5742</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and
Globigerinoides ruber
Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO
2
. Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO
2
concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity.
How temperatures at different seasons differ in response to different forcings is not well known. Here, the authors reconstruct annual and seasonal sea surface temperatures in the East China Sea and show that they react differently to CO2 and insolation forcing on glacial-interglacial timescales.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34593821</pmid><doi>10.1038/s41467-021-26051-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4549-1686</orcidid><orcidid>https://orcid.org/0000-0002-1136-7815</orcidid><orcidid>https://orcid.org/0000-0002-1548-9991</orcidid><orcidid>https://orcid.org/0000-0002-3167-0862</orcidid><orcidid>https://orcid.org/0000-0002-6366-6091</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-09, Vol.12 (1), p.5742-5742, Article 5742 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e3b90491ea9a4529ad29be14961b87dd |
source | PubMed Central(OpenAccess); Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 704/106/2738 704/106/413 Carbon dioxide Carbon dioxide concentration Climate change Climate variability Glacial periods Greenhouse gases Humanities and Social Sciences Ice sheets Insolation multidisciplinary Paleoclimate Pleistocene Radiative forcing Science Science (multidisciplinary) Sea surface temperature Seasonal variations Summer Surface temperature Temperature Temperature gradients Winter |
title | Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roles%20of%20insolation%20forcing%20and%20CO2%20forcing%20on%20Late%20Pleistocene%20seasonal%20sea%20surface%20temperatures&rft.jtitle=Nature%20communications&rft.au=Lee,%20Kyung%20Eun&rft.date=2021-09-30&rft.volume=12&rft.issue=1&rft.spage=5742&rft.epage=5742&rft.pages=5742-5742&rft.artnum=5742&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-26051-y&rft_dat=%3Cproquest_doaj_%3E2578778109%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-16afb7a6a5b1fc0b46ecb86e5fbc41cf62f1d543a320d5a6d74c058784e666443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577916065&rft_id=info:pmid/34593821&rfr_iscdi=true |