Loading…

A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations

The conjugate gradient projection method is one of the most effective methods for solving large-scale monotone nonlinear equations with convex constraints. In this paper, a new conjugate parameter is designed to generate the search direction, and an adaptive line search strategy is improved to yield...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-14
Main Authors: Liu, Pengjie, Jiang, Xianzhen, Jian, Jinbao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883
cites cdi_FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883
container_end_page 14
container_issue 2020
container_start_page 1
container_title Complexity (New York, N.Y.)
container_volume 2020
creator Liu, Pengjie
Jiang, Xianzhen
Jian, Jinbao
description The conjugate gradient projection method is one of the most effective methods for solving large-scale monotone nonlinear equations with convex constraints. In this paper, a new conjugate parameter is designed to generate the search direction, and an adaptive line search strategy is improved to yield the step size, and then, a new conjugate gradient projection method is proposed for large-scale monotone nonlinear equations with convex constraints. Under mild conditions, the proposed method is proved to be globally convergent. A large number of numerical experiments for the presented method and its comparisons are executed, which indicates that the presented method is very promising. Finally, the proposed method is applied to deal with the recovery of sparse signals.
doi_str_mv 10.1155/2020/8323865
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e3c1eb716a34405bbe87bf6271c488eb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640809654</galeid><doaj_id>oai_doaj_org_article_e3c1eb716a34405bbe87bf6271c488eb</doaj_id><sourcerecordid>A640809654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxSMEEqVw44wicYS042_7uFqVUqkUDvRsOfZk62hrt062hf8eh1RwBPkwo9HvPXv8muYtgRNChDilQOFUM8q0FM-aIwLGdCCofL70SnZUafWyeTVNIwAYydRRc71pr_Cx3eY0HnZuxva8uBAxze23kkf0c8yp_YLzTQ7tkMsCPuCPpUxzcTFhaK9y2tfGlfbs_uAWwfS6eTG4_YRvnupxc_3p7Pv2c3f59fxiu7nsvAA-dwwMBmScDoaCZswb0ETQYOoeioZgBAlGaRnQu973UvgARvUBKJHCaM2Om4vVN2Q32rsSb135abOL9vcgl511ZY5-jxaZJ9grIh3jHETfo1b9IKkinmuNffV6v3rdlXx_wGm2Yz6UVJ9vKadcKyk0r9TJSu1cNY1pyPUbfD0Bb6PPCYdY5xtNiQKmmPxfgeSgayRiueHjKvAlT1PB4c9eBOwSs11itk8xV_zDit_EFNxj_Bf9bqWxMji4vzThnFLFfgHiKa5w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424876584</pqid></control><display><type>article</type><title>A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations</title><source>Wiley Online Library Open Access</source><creator>Liu, Pengjie ; Jiang, Xianzhen ; Jian, Jinbao</creator><contributor>Liu, Chongyang ; Chongyang Liu</contributor><creatorcontrib>Liu, Pengjie ; Jiang, Xianzhen ; Jian, Jinbao ; Liu, Chongyang ; Chongyang Liu</creatorcontrib><description>The conjugate gradient projection method is one of the most effective methods for solving large-scale monotone nonlinear equations with convex constraints. In this paper, a new conjugate parameter is designed to generate the search direction, and an adaptive line search strategy is improved to yield the step size, and then, a new conjugate gradient projection method is proposed for large-scale monotone nonlinear equations with convex constraints. Under mild conditions, the proposed method is proved to be globally convergent. A large number of numerical experiments for the presented method and its comparisons are executed, which indicates that the presented method is very promising. Finally, the proposed method is applied to deal with the recovery of sparse signals.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2020/8323865</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Conjugates ; Constraints ; Nonlinear equations ; Projection</subject><ispartof>Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-14</ispartof><rights>Copyright © 2020 Pengjie Liu et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Pengjie Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883</citedby><cites>FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883</cites><orcidid>0000-0001-8048-7397 ; 0000-0001-7727-7583 ; 0000-0002-9176-6321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Liu, Chongyang</contributor><contributor>Chongyang Liu</contributor><creatorcontrib>Liu, Pengjie</creatorcontrib><creatorcontrib>Jiang, Xianzhen</creatorcontrib><creatorcontrib>Jian, Jinbao</creatorcontrib><title>A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations</title><title>Complexity (New York, N.Y.)</title><description>The conjugate gradient projection method is one of the most effective methods for solving large-scale monotone nonlinear equations with convex constraints. In this paper, a new conjugate parameter is designed to generate the search direction, and an adaptive line search strategy is improved to yield the step size, and then, a new conjugate gradient projection method is proposed for large-scale monotone nonlinear equations with convex constraints. Under mild conditions, the proposed method is proved to be globally convergent. A large number of numerical experiments for the presented method and its comparisons are executed, which indicates that the presented method is very promising. Finally, the proposed method is applied to deal with the recovery of sparse signals.</description><subject>Algorithms</subject><subject>Conjugates</subject><subject>Constraints</subject><subject>Nonlinear equations</subject><subject>Projection</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkc1v1DAQxSMEEqVw44wicYS042_7uFqVUqkUDvRsOfZk62hrt062hf8eh1RwBPkwo9HvPXv8muYtgRNChDilQOFUM8q0FM-aIwLGdCCofL70SnZUafWyeTVNIwAYydRRc71pr_Cx3eY0HnZuxva8uBAxze23kkf0c8yp_YLzTQ7tkMsCPuCPpUxzcTFhaK9y2tfGlfbs_uAWwfS6eTG4_YRvnupxc_3p7Pv2c3f59fxiu7nsvAA-dwwMBmScDoaCZswb0ETQYOoeioZgBAlGaRnQu973UvgARvUBKJHCaM2Om4vVN2Q32rsSb135abOL9vcgl511ZY5-jxaZJ9grIh3jHETfo1b9IKkinmuNffV6v3rdlXx_wGm2Yz6UVJ9vKadcKyk0r9TJSu1cNY1pyPUbfD0Bb6PPCYdY5xtNiQKmmPxfgeSgayRiueHjKvAlT1PB4c9eBOwSs11itk8xV_zDit_EFNxj_Bf9bqWxMji4vzThnFLFfgHiKa5w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Pengjie</creator><creator>Jiang, Xianzhen</creator><creator>Jian, Jinbao</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8048-7397</orcidid><orcidid>https://orcid.org/0000-0001-7727-7583</orcidid><orcidid>https://orcid.org/0000-0002-9176-6321</orcidid></search><sort><creationdate>2020</creationdate><title>A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations</title><author>Liu, Pengjie ; Jiang, Xianzhen ; Jian, Jinbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Conjugates</topic><topic>Constraints</topic><topic>Nonlinear equations</topic><topic>Projection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Pengjie</creatorcontrib><creatorcontrib>Jiang, Xianzhen</creatorcontrib><creatorcontrib>Jian, Jinbao</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Pengjie</au><au>Jiang, Xianzhen</au><au>Jian, Jinbao</au><au>Liu, Chongyang</au><au>Chongyang Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>The conjugate gradient projection method is one of the most effective methods for solving large-scale monotone nonlinear equations with convex constraints. In this paper, a new conjugate parameter is designed to generate the search direction, and an adaptive line search strategy is improved to yield the step size, and then, a new conjugate gradient projection method is proposed for large-scale monotone nonlinear equations with convex constraints. Under mild conditions, the proposed method is proved to be globally convergent. A large number of numerical experiments for the presented method and its comparisons are executed, which indicates that the presented method is very promising. Finally, the proposed method is applied to deal with the recovery of sparse signals.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8323865</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8048-7397</orcidid><orcidid>https://orcid.org/0000-0001-7727-7583</orcidid><orcidid>https://orcid.org/0000-0002-9176-6321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-14
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e3c1eb716a34405bbe87bf6271c488eb
source Wiley Online Library Open Access
subjects Algorithms
Conjugates
Constraints
Nonlinear equations
Projection
title A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Conjugate%20Gradient%20Projection%20Method%20for%20Convex%20Constrained%20Nonlinear%20Equations&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Liu,%20Pengjie&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2020/8323865&rft_dat=%3Cgale_doaj_%3EA640809654%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424876584&rft_id=info:pmid/&rft_galeid=A640809654&rfr_iscdi=true