Loading…
A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations
The conjugate gradient projection method is one of the most effective methods for solving large-scale monotone nonlinear equations with convex constraints. In this paper, a new conjugate parameter is designed to generate the search direction, and an adaptive line search strategy is improved to yield...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883 |
container_end_page | 14 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Complexity (New York, N.Y.) |
container_volume | 2020 |
creator | Liu, Pengjie Jiang, Xianzhen Jian, Jinbao |
description | The conjugate gradient projection method is one of the most effective methods for solving large-scale monotone nonlinear equations with convex constraints. In this paper, a new conjugate parameter is designed to generate the search direction, and an adaptive line search strategy is improved to yield the step size, and then, a new conjugate gradient projection method is proposed for large-scale monotone nonlinear equations with convex constraints. Under mild conditions, the proposed method is proved to be globally convergent. A large number of numerical experiments for the presented method and its comparisons are executed, which indicates that the presented method is very promising. Finally, the proposed method is applied to deal with the recovery of sparse signals. |
doi_str_mv | 10.1155/2020/8323865 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e3c1eb716a34405bbe87bf6271c488eb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640809654</galeid><doaj_id>oai_doaj_org_article_e3c1eb716a34405bbe87bf6271c488eb</doaj_id><sourcerecordid>A640809654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxSMEEqVw44wicYS042_7uFqVUqkUDvRsOfZk62hrt062hf8eh1RwBPkwo9HvPXv8muYtgRNChDilQOFUM8q0FM-aIwLGdCCofL70SnZUafWyeTVNIwAYydRRc71pr_Cx3eY0HnZuxva8uBAxze23kkf0c8yp_YLzTQ7tkMsCPuCPpUxzcTFhaK9y2tfGlfbs_uAWwfS6eTG4_YRvnupxc_3p7Pv2c3f59fxiu7nsvAA-dwwMBmScDoaCZswb0ETQYOoeioZgBAlGaRnQu973UvgARvUBKJHCaM2Om4vVN2Q32rsSb135abOL9vcgl511ZY5-jxaZJ9grIh3jHETfo1b9IKkinmuNffV6v3rdlXx_wGm2Yz6UVJ9vKadcKyk0r9TJSu1cNY1pyPUbfD0Bb6PPCYdY5xtNiQKmmPxfgeSgayRiueHjKvAlT1PB4c9eBOwSs11itk8xV_zDit_EFNxj_Bf9bqWxMji4vzThnFLFfgHiKa5w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424876584</pqid></control><display><type>article</type><title>A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations</title><source>Wiley Online Library Open Access</source><creator>Liu, Pengjie ; Jiang, Xianzhen ; Jian, Jinbao</creator><contributor>Liu, Chongyang ; Chongyang Liu</contributor><creatorcontrib>Liu, Pengjie ; Jiang, Xianzhen ; Jian, Jinbao ; Liu, Chongyang ; Chongyang Liu</creatorcontrib><description>The conjugate gradient projection method is one of the most effective methods for solving large-scale monotone nonlinear equations with convex constraints. In this paper, a new conjugate parameter is designed to generate the search direction, and an adaptive line search strategy is improved to yield the step size, and then, a new conjugate gradient projection method is proposed for large-scale monotone nonlinear equations with convex constraints. Under mild conditions, the proposed method is proved to be globally convergent. A large number of numerical experiments for the presented method and its comparisons are executed, which indicates that the presented method is very promising. Finally, the proposed method is applied to deal with the recovery of sparse signals.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2020/8323865</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Conjugates ; Constraints ; Nonlinear equations ; Projection</subject><ispartof>Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-14</ispartof><rights>Copyright © 2020 Pengjie Liu et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Pengjie Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883</citedby><cites>FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883</cites><orcidid>0000-0001-8048-7397 ; 0000-0001-7727-7583 ; 0000-0002-9176-6321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Liu, Chongyang</contributor><contributor>Chongyang Liu</contributor><creatorcontrib>Liu, Pengjie</creatorcontrib><creatorcontrib>Jiang, Xianzhen</creatorcontrib><creatorcontrib>Jian, Jinbao</creatorcontrib><title>A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations</title><title>Complexity (New York, N.Y.)</title><description>The conjugate gradient projection method is one of the most effective methods for solving large-scale monotone nonlinear equations with convex constraints. In this paper, a new conjugate parameter is designed to generate the search direction, and an adaptive line search strategy is improved to yield the step size, and then, a new conjugate gradient projection method is proposed for large-scale monotone nonlinear equations with convex constraints. Under mild conditions, the proposed method is proved to be globally convergent. A large number of numerical experiments for the presented method and its comparisons are executed, which indicates that the presented method is very promising. Finally, the proposed method is applied to deal with the recovery of sparse signals.</description><subject>Algorithms</subject><subject>Conjugates</subject><subject>Constraints</subject><subject>Nonlinear equations</subject><subject>Projection</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkc1v1DAQxSMEEqVw44wicYS042_7uFqVUqkUDvRsOfZk62hrt062hf8eh1RwBPkwo9HvPXv8muYtgRNChDilQOFUM8q0FM-aIwLGdCCofL70SnZUafWyeTVNIwAYydRRc71pr_Cx3eY0HnZuxva8uBAxze23kkf0c8yp_YLzTQ7tkMsCPuCPpUxzcTFhaK9y2tfGlfbs_uAWwfS6eTG4_YRvnupxc_3p7Pv2c3f59fxiu7nsvAA-dwwMBmScDoaCZswb0ETQYOoeioZgBAlGaRnQu973UvgARvUBKJHCaM2Om4vVN2Q32rsSb135abOL9vcgl511ZY5-jxaZJ9grIh3jHETfo1b9IKkinmuNffV6v3rdlXx_wGm2Yz6UVJ9vKadcKyk0r9TJSu1cNY1pyPUbfD0Bb6PPCYdY5xtNiQKmmPxfgeSgayRiueHjKvAlT1PB4c9eBOwSs11itk8xV_zDit_EFNxj_Bf9bqWxMji4vzThnFLFfgHiKa5w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Pengjie</creator><creator>Jiang, Xianzhen</creator><creator>Jian, Jinbao</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8048-7397</orcidid><orcidid>https://orcid.org/0000-0001-7727-7583</orcidid><orcidid>https://orcid.org/0000-0002-9176-6321</orcidid></search><sort><creationdate>2020</creationdate><title>A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations</title><author>Liu, Pengjie ; Jiang, Xianzhen ; Jian, Jinbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Conjugates</topic><topic>Constraints</topic><topic>Nonlinear equations</topic><topic>Projection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Pengjie</creatorcontrib><creatorcontrib>Jiang, Xianzhen</creatorcontrib><creatorcontrib>Jian, Jinbao</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Pengjie</au><au>Jiang, Xianzhen</au><au>Jian, Jinbao</au><au>Liu, Chongyang</au><au>Chongyang Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>The conjugate gradient projection method is one of the most effective methods for solving large-scale monotone nonlinear equations with convex constraints. In this paper, a new conjugate parameter is designed to generate the search direction, and an adaptive line search strategy is improved to yield the step size, and then, a new conjugate gradient projection method is proposed for large-scale monotone nonlinear equations with convex constraints. Under mild conditions, the proposed method is proved to be globally convergent. A large number of numerical experiments for the presented method and its comparisons are executed, which indicates that the presented method is very promising. Finally, the proposed method is applied to deal with the recovery of sparse signals.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8323865</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8048-7397</orcidid><orcidid>https://orcid.org/0000-0001-7727-7583</orcidid><orcidid>https://orcid.org/0000-0002-9176-6321</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-14 |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e3c1eb716a34405bbe87bf6271c488eb |
source | Wiley Online Library Open Access |
subjects | Algorithms Conjugates Constraints Nonlinear equations Projection |
title | A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Conjugate%20Gradient%20Projection%20Method%20for%20Convex%20Constrained%20Nonlinear%20Equations&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Liu,%20Pengjie&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2020/8323865&rft_dat=%3Cgale_doaj_%3EA640809654%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-309ede342f920833c908152d902072dd951d9786decabcb65cd097bd021659883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2424876584&rft_id=info:pmid/&rft_galeid=A640809654&rfr_iscdi=true |