Loading…
AMPK Localization: A Key to Differential Energy Regulation
As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generat...
Saved in:
Published in: | International journal of molecular sciences 2021-10, Vol.22 (20), p.10921 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93 |
container_end_page | |
container_issue | 20 |
container_start_page | 10921 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Afinanisa, Qonita Cho, Min Kyung Seong, Hyun-A |
description | As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation. |
doi_str_mv | 10.3390/ijms222010921 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e3e1592613974fd7bdb27c3b90e07cbd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e3e1592613974fd7bdb27c3b90e07cbd</doaj_id><sourcerecordid>2584791300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4Motj199FUWfPFldZLZ3Wz6IBy1aumJIvoc8mP2zLG3qdld4frXG-9q6QmBhMmHDzPzZewFhzeICt6GzXYUQgAHJfgjdsorIUqARj5-8D5hZ-O4ARAoavWUnWDVtLxu-Sk7X37-el2sojN9uDVTiMN5sSyuaVdMsXgfuo4SDVMwfXE5UFrvim-0nvs9-Iw96Uw_0vO7e8F-fLj8fvGpXH35eHWxXJWuavlUkiRFbYMETVujarlBz60DVVnHOVrj0ShP4JwHIGNQ5dNZ65F8S0bhgl0dvD6ajb5JYWvSTkcT9L4Q01qbNAXXkyYkXivRcFSy6ry03grp0CogkC4rF-zdwXUz2y15l2dLpj-SHv8M4adex986t143kmfB6ztBir9mGie9DaOjvjcDxXnUom4rqTgCZPTVf-gmzmnIq9pTlZComkyVB8qlOI6JuvtmOOi_CeujhDP_8uEE9_S_SPEPqmGhUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584427396</pqid></control><display><type>article</type><title>AMPK Localization: A Key to Differential Energy Regulation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Afinanisa, Qonita ; Cho, Min Kyung ; Seong, Hyun-A</creator><creatorcontrib>Afinanisa, Qonita ; Cho, Min Kyung ; Seong, Hyun-A</creatorcontrib><description>As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms222010921</identifier><identifier>PMID: 34681581</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Active Transport, Cell Nucleus ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - chemistry ; AMP-Activated Protein Kinases - metabolism ; AMPK ; Autophagy ; Cell cycle ; Cell density ; Cell Nucleus - metabolism ; Circadian Rhythm ; Circadian rhythms ; compartmentalization ; CRM1 ; Cytoplasm ; Cytoplasm - metabolism ; Energy balance ; Energy Metabolism ; Energy regulation ; Exportin 1 Protein ; Fatty acids ; Gene expression ; Glucose ; Heat shock ; Heat-Shock Response ; Homeostasis ; Humans ; Karyopherins - metabolism ; Kinases ; Localization ; Mammals ; Metabolic pathways ; Metabolism ; Nuclear transport ; Nutrition ; Oxidants ; Oxidation ; Oxidizing agents ; Phosphorylation ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Proteins ; Receptors, Cytoplasmic and Nuclear - metabolism ; Review ; Sterols ; Transcription factors</subject><ispartof>International journal of molecular sciences, 2021-10, Vol.22 (20), p.10921</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93</citedby><cites>FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93</cites><orcidid>0000-0001-9309-3207 ; 0000-0002-5997-9028 ; 0000-0001-6508-6966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2584427396/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2584427396?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34681581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Afinanisa, Qonita</creatorcontrib><creatorcontrib>Cho, Min Kyung</creatorcontrib><creatorcontrib>Seong, Hyun-A</creatorcontrib><title>AMPK Localization: A Key to Differential Energy Regulation</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.</description><subject>Active Transport, Cell Nucleus</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - chemistry</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>AMPK</subject><subject>Autophagy</subject><subject>Cell cycle</subject><subject>Cell density</subject><subject>Cell Nucleus - metabolism</subject><subject>Circadian Rhythm</subject><subject>Circadian rhythms</subject><subject>compartmentalization</subject><subject>CRM1</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Energy balance</subject><subject>Energy Metabolism</subject><subject>Energy regulation</subject><subject>Exportin 1 Protein</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Heat shock</subject><subject>Heat-Shock Response</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Karyopherins - metabolism</subject><subject>Kinases</subject><subject>Localization</subject><subject>Mammals</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Nuclear transport</subject><subject>Nutrition</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Phosphorylation</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Review</subject><subject>Sterols</subject><subject>Transcription factors</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkd9rFDEQx4Motj199FUWfPFldZLZ3Wz6IBy1aumJIvoc8mP2zLG3qdld4frXG-9q6QmBhMmHDzPzZewFhzeICt6GzXYUQgAHJfgjdsorIUqARj5-8D5hZ-O4ARAoavWUnWDVtLxu-Sk7X37-el2sojN9uDVTiMN5sSyuaVdMsXgfuo4SDVMwfXE5UFrvim-0nvs9-Iw96Uw_0vO7e8F-fLj8fvGpXH35eHWxXJWuavlUkiRFbYMETVujarlBz60DVVnHOVrj0ShP4JwHIGNQ5dNZ65F8S0bhgl0dvD6ajb5JYWvSTkcT9L4Q01qbNAXXkyYkXivRcFSy6ry03grp0CogkC4rF-zdwXUz2y15l2dLpj-SHv8M4adex986t143kmfB6ztBir9mGie9DaOjvjcDxXnUom4rqTgCZPTVf-gmzmnIq9pTlZComkyVB8qlOI6JuvtmOOi_CeujhDP_8uEE9_S_SPEPqmGhUA</recordid><startdate>20211010</startdate><enddate>20211010</enddate><creator>Afinanisa, Qonita</creator><creator>Cho, Min Kyung</creator><creator>Seong, Hyun-A</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9309-3207</orcidid><orcidid>https://orcid.org/0000-0002-5997-9028</orcidid><orcidid>https://orcid.org/0000-0001-6508-6966</orcidid></search><sort><creationdate>20211010</creationdate><title>AMPK Localization: A Key to Differential Energy Regulation</title><author>Afinanisa, Qonita ; Cho, Min Kyung ; Seong, Hyun-A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - chemistry</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>AMPK</topic><topic>Autophagy</topic><topic>Cell cycle</topic><topic>Cell density</topic><topic>Cell Nucleus - metabolism</topic><topic>Circadian Rhythm</topic><topic>Circadian rhythms</topic><topic>compartmentalization</topic><topic>CRM1</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Energy balance</topic><topic>Energy Metabolism</topic><topic>Energy regulation</topic><topic>Exportin 1 Protein</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Heat shock</topic><topic>Heat-Shock Response</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Karyopherins - metabolism</topic><topic>Kinases</topic><topic>Localization</topic><topic>Mammals</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Nuclear transport</topic><topic>Nutrition</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Phosphorylation</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Review</topic><topic>Sterols</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afinanisa, Qonita</creatorcontrib><creatorcontrib>Cho, Min Kyung</creatorcontrib><creatorcontrib>Seong, Hyun-A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afinanisa, Qonita</au><au>Cho, Min Kyung</au><au>Seong, Hyun-A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMPK Localization: A Key to Differential Energy Regulation</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-10-10</date><risdate>2021</risdate><volume>22</volume><issue>20</issue><spage>10921</spage><pages>10921-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34681581</pmid><doi>10.3390/ijms222010921</doi><orcidid>https://orcid.org/0000-0001-9309-3207</orcidid><orcidid>https://orcid.org/0000-0002-5997-9028</orcidid><orcidid>https://orcid.org/0000-0001-6508-6966</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-10, Vol.22 (20), p.10921 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e3e1592613974fd7bdb27c3b90e07cbd |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Active Transport, Cell Nucleus AMP-activated protein kinase AMP-Activated Protein Kinases - chemistry AMP-Activated Protein Kinases - metabolism AMPK Autophagy Cell cycle Cell density Cell Nucleus - metabolism Circadian Rhythm Circadian rhythms compartmentalization CRM1 Cytoplasm Cytoplasm - metabolism Energy balance Energy Metabolism Energy regulation Exportin 1 Protein Fatty acids Gene expression Glucose Heat shock Heat-Shock Response Homeostasis Humans Karyopherins - metabolism Kinases Localization Mammals Metabolic pathways Metabolism Nuclear transport Nutrition Oxidants Oxidation Oxidizing agents Phosphorylation Protein Subunits - chemistry Protein Subunits - metabolism Proteins Receptors, Cytoplasmic and Nuclear - metabolism Review Sterols Transcription factors |
title | AMPK Localization: A Key to Differential Energy Regulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMPK%20Localization:%20A%20Key%20to%20Differential%20Energy%20Regulation&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Afinanisa,%20Qonita&rft.date=2021-10-10&rft.volume=22&rft.issue=20&rft.spage=10921&rft.pages=10921-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms222010921&rft_dat=%3Cproquest_doaj_%3E2584791300%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584427396&rft_id=info:pmid/34681581&rfr_iscdi=true |