Loading…

AMPK Localization: A Key to Differential Energy Regulation

As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generat...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-10, Vol.22 (20), p.10921
Main Authors: Afinanisa, Qonita, Cho, Min Kyung, Seong, Hyun-A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93
cites cdi_FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93
container_end_page
container_issue 20
container_start_page 10921
container_title International journal of molecular sciences
container_volume 22
creator Afinanisa, Qonita
Cho, Min Kyung
Seong, Hyun-A
description As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.
doi_str_mv 10.3390/ijms222010921
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e3e1592613974fd7bdb27c3b90e07cbd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e3e1592613974fd7bdb27c3b90e07cbd</doaj_id><sourcerecordid>2584791300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4Motj199FUWfPFldZLZ3Wz6IBy1aumJIvoc8mP2zLG3qdld4frXG-9q6QmBhMmHDzPzZewFhzeICt6GzXYUQgAHJfgjdsorIUqARj5-8D5hZ-O4ARAoavWUnWDVtLxu-Sk7X37-el2sojN9uDVTiMN5sSyuaVdMsXgfuo4SDVMwfXE5UFrvim-0nvs9-Iw96Uw_0vO7e8F-fLj8fvGpXH35eHWxXJWuavlUkiRFbYMETVujarlBz60DVVnHOVrj0ShP4JwHIGNQ5dNZ65F8S0bhgl0dvD6ajb5JYWvSTkcT9L4Q01qbNAXXkyYkXivRcFSy6ry03grp0CogkC4rF-zdwXUz2y15l2dLpj-SHv8M4adex986t143kmfB6ztBir9mGie9DaOjvjcDxXnUom4rqTgCZPTVf-gmzmnIq9pTlZComkyVB8qlOI6JuvtmOOi_CeujhDP_8uEE9_S_SPEPqmGhUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584427396</pqid></control><display><type>article</type><title>AMPK Localization: A Key to Differential Energy Regulation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Afinanisa, Qonita ; Cho, Min Kyung ; Seong, Hyun-A</creator><creatorcontrib>Afinanisa, Qonita ; Cho, Min Kyung ; Seong, Hyun-A</creatorcontrib><description>As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms222010921</identifier><identifier>PMID: 34681581</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Active Transport, Cell Nucleus ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - chemistry ; AMP-Activated Protein Kinases - metabolism ; AMPK ; Autophagy ; Cell cycle ; Cell density ; Cell Nucleus - metabolism ; Circadian Rhythm ; Circadian rhythms ; compartmentalization ; CRM1 ; Cytoplasm ; Cytoplasm - metabolism ; Energy balance ; Energy Metabolism ; Energy regulation ; Exportin 1 Protein ; Fatty acids ; Gene expression ; Glucose ; Heat shock ; Heat-Shock Response ; Homeostasis ; Humans ; Karyopherins - metabolism ; Kinases ; Localization ; Mammals ; Metabolic pathways ; Metabolism ; Nuclear transport ; Nutrition ; Oxidants ; Oxidation ; Oxidizing agents ; Phosphorylation ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Proteins ; Receptors, Cytoplasmic and Nuclear - metabolism ; Review ; Sterols ; Transcription factors</subject><ispartof>International journal of molecular sciences, 2021-10, Vol.22 (20), p.10921</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93</citedby><cites>FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93</cites><orcidid>0000-0001-9309-3207 ; 0000-0002-5997-9028 ; 0000-0001-6508-6966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2584427396/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2584427396?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34681581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Afinanisa, Qonita</creatorcontrib><creatorcontrib>Cho, Min Kyung</creatorcontrib><creatorcontrib>Seong, Hyun-A</creatorcontrib><title>AMPK Localization: A Key to Differential Energy Regulation</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.</description><subject>Active Transport, Cell Nucleus</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - chemistry</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>AMPK</subject><subject>Autophagy</subject><subject>Cell cycle</subject><subject>Cell density</subject><subject>Cell Nucleus - metabolism</subject><subject>Circadian Rhythm</subject><subject>Circadian rhythms</subject><subject>compartmentalization</subject><subject>CRM1</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Energy balance</subject><subject>Energy Metabolism</subject><subject>Energy regulation</subject><subject>Exportin 1 Protein</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Heat shock</subject><subject>Heat-Shock Response</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Karyopherins - metabolism</subject><subject>Kinases</subject><subject>Localization</subject><subject>Mammals</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Nuclear transport</subject><subject>Nutrition</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Phosphorylation</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Review</subject><subject>Sterols</subject><subject>Transcription factors</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkd9rFDEQx4Motj199FUWfPFldZLZ3Wz6IBy1aumJIvoc8mP2zLG3qdld4frXG-9q6QmBhMmHDzPzZewFhzeICt6GzXYUQgAHJfgjdsorIUqARj5-8D5hZ-O4ARAoavWUnWDVtLxu-Sk7X37-el2sojN9uDVTiMN5sSyuaVdMsXgfuo4SDVMwfXE5UFrvim-0nvs9-Iw96Uw_0vO7e8F-fLj8fvGpXH35eHWxXJWuavlUkiRFbYMETVujarlBz60DVVnHOVrj0ShP4JwHIGNQ5dNZ65F8S0bhgl0dvD6ajb5JYWvSTkcT9L4Q01qbNAXXkyYkXivRcFSy6ry03grp0CogkC4rF-zdwXUz2y15l2dLpj-SHv8M4adex986t143kmfB6ztBir9mGie9DaOjvjcDxXnUom4rqTgCZPTVf-gmzmnIq9pTlZComkyVB8qlOI6JuvtmOOi_CeujhDP_8uEE9_S_SPEPqmGhUA</recordid><startdate>20211010</startdate><enddate>20211010</enddate><creator>Afinanisa, Qonita</creator><creator>Cho, Min Kyung</creator><creator>Seong, Hyun-A</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9309-3207</orcidid><orcidid>https://orcid.org/0000-0002-5997-9028</orcidid><orcidid>https://orcid.org/0000-0001-6508-6966</orcidid></search><sort><creationdate>20211010</creationdate><title>AMPK Localization: A Key to Differential Energy Regulation</title><author>Afinanisa, Qonita ; Cho, Min Kyung ; Seong, Hyun-A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - chemistry</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>AMPK</topic><topic>Autophagy</topic><topic>Cell cycle</topic><topic>Cell density</topic><topic>Cell Nucleus - metabolism</topic><topic>Circadian Rhythm</topic><topic>Circadian rhythms</topic><topic>compartmentalization</topic><topic>CRM1</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Energy balance</topic><topic>Energy Metabolism</topic><topic>Energy regulation</topic><topic>Exportin 1 Protein</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Heat shock</topic><topic>Heat-Shock Response</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Karyopherins - metabolism</topic><topic>Kinases</topic><topic>Localization</topic><topic>Mammals</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Nuclear transport</topic><topic>Nutrition</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Phosphorylation</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Review</topic><topic>Sterols</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afinanisa, Qonita</creatorcontrib><creatorcontrib>Cho, Min Kyung</creatorcontrib><creatorcontrib>Seong, Hyun-A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afinanisa, Qonita</au><au>Cho, Min Kyung</au><au>Seong, Hyun-A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMPK Localization: A Key to Differential Energy Regulation</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-10-10</date><risdate>2021</risdate><volume>22</volume><issue>20</issue><spage>10921</spage><pages>10921-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively employs RanGTPase-driven importin that might recognize the nuclear localization signal (NLS) present on the AMPKα2 kinase domain. Nucleo-cytoplasmic shuttling of AMPK is influenced by multiple factors, such as starvation, exercise, heat shock, oxidant, cell density, and circadian rhythm. Tissue-specific localization, which distributes AMPK trimers with different combinations, has also been shown to be vital in maintaining tissue-specific metabolism. Tissue-specific and subcellular distribution of AMPK might be attributed to differences in the expression of the subunit, the stabilization by protein regulators, tissue activity, and the localization of AMPK activators. Considering the importance of AMPK localization in coordinating signaling and metabolism, further research is due to fully elucidate the largely unknown complex mechanism underlying this regulation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34681581</pmid><doi>10.3390/ijms222010921</doi><orcidid>https://orcid.org/0000-0001-9309-3207</orcidid><orcidid>https://orcid.org/0000-0002-5997-9028</orcidid><orcidid>https://orcid.org/0000-0001-6508-6966</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-10, Vol.22 (20), p.10921
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e3e1592613974fd7bdb27c3b90e07cbd
source Open Access: PubMed Central; Publicly Available Content Database
subjects Active Transport, Cell Nucleus
AMP-activated protein kinase
AMP-Activated Protein Kinases - chemistry
AMP-Activated Protein Kinases - metabolism
AMPK
Autophagy
Cell cycle
Cell density
Cell Nucleus - metabolism
Circadian Rhythm
Circadian rhythms
compartmentalization
CRM1
Cytoplasm
Cytoplasm - metabolism
Energy balance
Energy Metabolism
Energy regulation
Exportin 1 Protein
Fatty acids
Gene expression
Glucose
Heat shock
Heat-Shock Response
Homeostasis
Humans
Karyopherins - metabolism
Kinases
Localization
Mammals
Metabolic pathways
Metabolism
Nuclear transport
Nutrition
Oxidants
Oxidation
Oxidizing agents
Phosphorylation
Protein Subunits - chemistry
Protein Subunits - metabolism
Proteins
Receptors, Cytoplasmic and Nuclear - metabolism
Review
Sterols
Transcription factors
title AMPK Localization: A Key to Differential Energy Regulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMPK%20Localization:%20A%20Key%20to%20Differential%20Energy%20Regulation&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Afinanisa,%20Qonita&rft.date=2021-10-10&rft.volume=22&rft.issue=20&rft.spage=10921&rft.pages=10921-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms222010921&rft_dat=%3Cproquest_doaj_%3E2584791300%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-e7e9e863e06853981a3d1bc094bc113bad3a9de0ccd00eaa39a39fbbd3ed8ea93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584427396&rft_id=info:pmid/34681581&rfr_iscdi=true