Loading…

Epstein-Barr virus deubiquitinating enzyme BPLF1 is involved in EBV carcinogenesis by affecting cellular genomic stability

Increased mutational burden and EBV load have been revealed from normal tissues to Epstein-Barr virus (EBV)-associated gastric carcinomas (EBVaGCs). BPLF1, encoded by EBV, is a lytic cycle protein with deubiquitinating activity has been found to participate in disrupting repair of DNA damage. We fir...

Full description

Saved in:
Bibliographic Details
Published in:Neoplasia (New York, N.Y.) N.Y.), 2024-09, Vol.55, p.101012, Article 101012
Main Authors: Wu, Hantao, Han, Bo-Wei, Liu, Tiancai, Zhang, Min, Wu, Yingsong, Nie, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increased mutational burden and EBV load have been revealed from normal tissues to Epstein-Barr virus (EBV)-associated gastric carcinomas (EBVaGCs). BPLF1, encoded by EBV, is a lytic cycle protein with deubiquitinating activity has been found to participate in disrupting repair of DNA damage. We first confirmed that BPLF1 gene in gastric cancer (GC) significantly increased the DNA double strand breaks (DSBs). Ubiquitination mass spectrometry identified histones as BPLF1 interactors and potential substrates, and co-immunoprecipitation and in vitro experiments verified that BPLF1 regulates H2Bub by targeting Rad6. Over-expressing Rad6 restored H2Bub but partially reduced γ-H2AX, suggesting that other downstream DNA repair processes were affected. mRNA expression of BRCA2 were significantly down-regulated by next-generation sequencing after over-expression of BPLF1, and over-expression of p65 facilitated the repair of DSBs. We demonstrated BPLF1 may lead to the accumulation of DSBs by two pathways, reducing H2B ubiquitination (H2Bub) and blocking homologous recombination which may provide new ideas for the treatment of gastric cancer.
ISSN:1476-5586
1522-8002
1476-5586
DOI:10.1016/j.neo.2024.101012