Loading…

In Situ MIMO-WPT Recharging of UAVs Using Intelligent Flying Energy Sources

Unmanned Aerial Vehicles (UAVs), used in civilian applications such as emergency medical deliveries, precision agriculture, wireless communication provisioning, etc., face the challenge of limited flight time due to their reliance on the on-board battery. Therefore, developing efficient mechanisms f...

Full description

Saved in:
Bibliographic Details
Published in:Drones (Basel) 2021-09, Vol.5 (3), p.89
Main Authors: Hoseini, Sayed Amir, Hassan, Jahan, Bokani, Ayub, Kanhere, Salil S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-40c52222b06de0add14e33699f20ec165b0d9341d07c6007b7c968fa781c79df3
cites cdi_FETCH-LOGICAL-c370t-40c52222b06de0add14e33699f20ec165b0d9341d07c6007b7c968fa781c79df3
container_end_page
container_issue 3
container_start_page 89
container_title Drones (Basel)
container_volume 5
creator Hoseini, Sayed Amir
Hassan, Jahan
Bokani, Ayub
Kanhere, Salil S.
description Unmanned Aerial Vehicles (UAVs), used in civilian applications such as emergency medical deliveries, precision agriculture, wireless communication provisioning, etc., face the challenge of limited flight time due to their reliance on the on-board battery. Therefore, developing efficient mechanisms for in situ power transfer to recharge UAV batteries holds potential to extend their mission time. In this paper, we study the use of the far-field wireless power transfer (WPT) technique from specialized, transmitter UAVs (tUAVs) carrying Multiple Input Multiple Output (MIMO) antennas for transferring wireless power to receiver UAVs (rUAVs) in a mission. The tUAVs can fly and adjust their distance to the rUAVs to maximize energy transfer gain. The use of MIMO antennas further boosts the energy reception by narrowing the energy beam toward the rUAVs. The complexity of their dynamic operating environment increases with the growing number of tUAVs and rUAVs with varying levels of energy consumption and residual power. We propose an intelligent trajectory selection algorithm for the tUAVs based on a deep reinforcement learning model called Proximal Policy Optimization (PPO) to optimize the energy transfer gain. The simulation results demonstrate that the PPO-based system achieves about a tenfold increase in flight time for a set of realistic transmit power, distance, sub-band number and antenna numbers. Further, PPO outperforms the benchmark movement strategies of “Traveling Salesman Problem” and “Low Battery First” when used by the tUAVs.
doi_str_mv 10.3390/drones5030089
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e3f7a477d81e4d348fe3e61ac59e1add</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e3f7a477d81e4d348fe3e61ac59e1add</doaj_id><sourcerecordid>2576400059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-40c52222b06de0add14e33699f20ec165b0d9341d07c6007b7c968fa781c79df3</originalsourceid><addsrcrecordid>eNpVUMFOwzAMrRBITLAj90icC06TJs1xmjao2DTENuAWZYlbOpUWku6wv6djCIEvtp-e3rNfFF1RuGFMwa3zbYMhBQaQqZNokKTAY87F6-mf-TwahrAFgCThqVB0ED3kDVlW3Y7M8_kifnlckSe0b8aXVVOStiDr0XMg63DY8qbDuq5KbDoyrfcHaNKgL_dk2e68xXAZnRWmDjj86RfRejpZje_j2eIuH49msWUSupiDTZO-NiAcgnGOcmRMKFUkgJaKdANOMU4dSCsA5EZaJbLCyIxaqVzBLqL8qOtas9Ufvno3fq9bU-lvoPWlNr6rbI0aWSENl9JlFLljPCuQoaDGpgppb91rXR-1Pnz7ucPQ6W3_TNOfr5NUCt5nlaqeFR9Z1rcheCx-XSnoQ_z6X_zsC1Ckdvg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576400059</pqid></control><display><type>article</type><title>In Situ MIMO-WPT Recharging of UAVs Using Intelligent Flying Energy Sources</title><source>Publicly Available Content Database</source><creator>Hoseini, Sayed Amir ; Hassan, Jahan ; Bokani, Ayub ; Kanhere, Salil S.</creator><creatorcontrib>Hoseini, Sayed Amir ; Hassan, Jahan ; Bokani, Ayub ; Kanhere, Salil S.</creatorcontrib><description>Unmanned Aerial Vehicles (UAVs), used in civilian applications such as emergency medical deliveries, precision agriculture, wireless communication provisioning, etc., face the challenge of limited flight time due to their reliance on the on-board battery. Therefore, developing efficient mechanisms for in situ power transfer to recharge UAV batteries holds potential to extend their mission time. In this paper, we study the use of the far-field wireless power transfer (WPT) technique from specialized, transmitter UAVs (tUAVs) carrying Multiple Input Multiple Output (MIMO) antennas for transferring wireless power to receiver UAVs (rUAVs) in a mission. The tUAVs can fly and adjust their distance to the rUAVs to maximize energy transfer gain. The use of MIMO antennas further boosts the energy reception by narrowing the energy beam toward the rUAVs. The complexity of their dynamic operating environment increases with the growing number of tUAVs and rUAVs with varying levels of energy consumption and residual power. We propose an intelligent trajectory selection algorithm for the tUAVs based on a deep reinforcement learning model called Proximal Policy Optimization (PPO) to optimize the energy transfer gain. The simulation results demonstrate that the PPO-based system achieves about a tenfold increase in flight time for a set of realistic transmit power, distance, sub-band number and antenna numbers. Further, PPO outperforms the benchmark movement strategies of “Traveling Salesman Problem” and “Low Battery First” when used by the tUAVs.</description><identifier>ISSN: 2504-446X</identifier><identifier>EISSN: 2504-446X</identifier><identifier>DOI: 10.3390/drones5030089</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Antennas ; Aviation ; deep reinforcement learning ; Drones ; Emergency medical services ; Energy consumption ; Energy efficiency ; Energy resources ; Energy transfer ; Flight time ; Ground stations ; MIMO ; MIMO communication ; Optimization ; Power supply ; Provisioning ; Receivers &amp; amplifiers ; Rechargeable batteries ; Recharging ; RF energy harvesting ; Traveling salesman problem ; UAVs ; Unmanned aerial vehicles ; Wireless communications ; wireless power transfer ; Wireless power transmission</subject><ispartof>Drones (Basel), 2021-09, Vol.5 (3), p.89</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-40c52222b06de0add14e33699f20ec165b0d9341d07c6007b7c968fa781c79df3</citedby><cites>FETCH-LOGICAL-c370t-40c52222b06de0add14e33699f20ec165b0d9341d07c6007b7c968fa781c79df3</cites><orcidid>0000-0002-1835-3475 ; 0000-0002-0939-2106 ; 0000-0002-3105-4218 ; 0000-0001-5160-7724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576400059/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576400059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Hoseini, Sayed Amir</creatorcontrib><creatorcontrib>Hassan, Jahan</creatorcontrib><creatorcontrib>Bokani, Ayub</creatorcontrib><creatorcontrib>Kanhere, Salil S.</creatorcontrib><title>In Situ MIMO-WPT Recharging of UAVs Using Intelligent Flying Energy Sources</title><title>Drones (Basel)</title><description>Unmanned Aerial Vehicles (UAVs), used in civilian applications such as emergency medical deliveries, precision agriculture, wireless communication provisioning, etc., face the challenge of limited flight time due to their reliance on the on-board battery. Therefore, developing efficient mechanisms for in situ power transfer to recharge UAV batteries holds potential to extend their mission time. In this paper, we study the use of the far-field wireless power transfer (WPT) technique from specialized, transmitter UAVs (tUAVs) carrying Multiple Input Multiple Output (MIMO) antennas for transferring wireless power to receiver UAVs (rUAVs) in a mission. The tUAVs can fly and adjust their distance to the rUAVs to maximize energy transfer gain. The use of MIMO antennas further boosts the energy reception by narrowing the energy beam toward the rUAVs. The complexity of their dynamic operating environment increases with the growing number of tUAVs and rUAVs with varying levels of energy consumption and residual power. We propose an intelligent trajectory selection algorithm for the tUAVs based on a deep reinforcement learning model called Proximal Policy Optimization (PPO) to optimize the energy transfer gain. The simulation results demonstrate that the PPO-based system achieves about a tenfold increase in flight time for a set of realistic transmit power, distance, sub-band number and antenna numbers. Further, PPO outperforms the benchmark movement strategies of “Traveling Salesman Problem” and “Low Battery First” when used by the tUAVs.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Aviation</subject><subject>deep reinforcement learning</subject><subject>Drones</subject><subject>Emergency medical services</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy resources</subject><subject>Energy transfer</subject><subject>Flight time</subject><subject>Ground stations</subject><subject>MIMO</subject><subject>MIMO communication</subject><subject>Optimization</subject><subject>Power supply</subject><subject>Provisioning</subject><subject>Receivers &amp; amplifiers</subject><subject>Rechargeable batteries</subject><subject>Recharging</subject><subject>RF energy harvesting</subject><subject>Traveling salesman problem</subject><subject>UAVs</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communications</subject><subject>wireless power transfer</subject><subject>Wireless power transmission</subject><issn>2504-446X</issn><issn>2504-446X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUMFOwzAMrRBITLAj90icC06TJs1xmjao2DTENuAWZYlbOpUWku6wv6djCIEvtp-e3rNfFF1RuGFMwa3zbYMhBQaQqZNokKTAY87F6-mf-TwahrAFgCThqVB0ED3kDVlW3Y7M8_kifnlckSe0b8aXVVOStiDr0XMg63DY8qbDuq5KbDoyrfcHaNKgL_dk2e68xXAZnRWmDjj86RfRejpZje_j2eIuH49msWUSupiDTZO-NiAcgnGOcmRMKFUkgJaKdANOMU4dSCsA5EZaJbLCyIxaqVzBLqL8qOtas9Ufvno3fq9bU-lvoPWlNr6rbI0aWSENl9JlFLljPCuQoaDGpgppb91rXR-1Pnz7ucPQ6W3_TNOfr5NUCt5nlaqeFR9Z1rcheCx-XSnoQ_z6X_zsC1Ckdvg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Hoseini, Sayed Amir</creator><creator>Hassan, Jahan</creator><creator>Bokani, Ayub</creator><creator>Kanhere, Salil S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1835-3475</orcidid><orcidid>https://orcid.org/0000-0002-0939-2106</orcidid><orcidid>https://orcid.org/0000-0002-3105-4218</orcidid><orcidid>https://orcid.org/0000-0001-5160-7724</orcidid></search><sort><creationdate>20210901</creationdate><title>In Situ MIMO-WPT Recharging of UAVs Using Intelligent Flying Energy Sources</title><author>Hoseini, Sayed Amir ; Hassan, Jahan ; Bokani, Ayub ; Kanhere, Salil S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-40c52222b06de0add14e33699f20ec165b0d9341d07c6007b7c968fa781c79df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Aviation</topic><topic>deep reinforcement learning</topic><topic>Drones</topic><topic>Emergency medical services</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy resources</topic><topic>Energy transfer</topic><topic>Flight time</topic><topic>Ground stations</topic><topic>MIMO</topic><topic>MIMO communication</topic><topic>Optimization</topic><topic>Power supply</topic><topic>Provisioning</topic><topic>Receivers &amp; amplifiers</topic><topic>Rechargeable batteries</topic><topic>Recharging</topic><topic>RF energy harvesting</topic><topic>Traveling salesman problem</topic><topic>UAVs</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communications</topic><topic>wireless power transfer</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoseini, Sayed Amir</creatorcontrib><creatorcontrib>Hassan, Jahan</creatorcontrib><creatorcontrib>Bokani, Ayub</creatorcontrib><creatorcontrib>Kanhere, Salil S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Drones (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoseini, Sayed Amir</au><au>Hassan, Jahan</au><au>Bokani, Ayub</au><au>Kanhere, Salil S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ MIMO-WPT Recharging of UAVs Using Intelligent Flying Energy Sources</atitle><jtitle>Drones (Basel)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>5</volume><issue>3</issue><spage>89</spage><pages>89-</pages><issn>2504-446X</issn><eissn>2504-446X</eissn><abstract>Unmanned Aerial Vehicles (UAVs), used in civilian applications such as emergency medical deliveries, precision agriculture, wireless communication provisioning, etc., face the challenge of limited flight time due to their reliance on the on-board battery. Therefore, developing efficient mechanisms for in situ power transfer to recharge UAV batteries holds potential to extend their mission time. In this paper, we study the use of the far-field wireless power transfer (WPT) technique from specialized, transmitter UAVs (tUAVs) carrying Multiple Input Multiple Output (MIMO) antennas for transferring wireless power to receiver UAVs (rUAVs) in a mission. The tUAVs can fly and adjust their distance to the rUAVs to maximize energy transfer gain. The use of MIMO antennas further boosts the energy reception by narrowing the energy beam toward the rUAVs. The complexity of their dynamic operating environment increases with the growing number of tUAVs and rUAVs with varying levels of energy consumption and residual power. We propose an intelligent trajectory selection algorithm for the tUAVs based on a deep reinforcement learning model called Proximal Policy Optimization (PPO) to optimize the energy transfer gain. The simulation results demonstrate that the PPO-based system achieves about a tenfold increase in flight time for a set of realistic transmit power, distance, sub-band number and antenna numbers. Further, PPO outperforms the benchmark movement strategies of “Traveling Salesman Problem” and “Low Battery First” when used by the tUAVs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/drones5030089</doi><orcidid>https://orcid.org/0000-0002-1835-3475</orcidid><orcidid>https://orcid.org/0000-0002-0939-2106</orcidid><orcidid>https://orcid.org/0000-0002-3105-4218</orcidid><orcidid>https://orcid.org/0000-0001-5160-7724</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-446X
ispartof Drones (Basel), 2021-09, Vol.5 (3), p.89
issn 2504-446X
2504-446X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e3f7a477d81e4d348fe3e61ac59e1add
source Publicly Available Content Database
subjects Algorithms
Antennas
Aviation
deep reinforcement learning
Drones
Emergency medical services
Energy consumption
Energy efficiency
Energy resources
Energy transfer
Flight time
Ground stations
MIMO
MIMO communication
Optimization
Power supply
Provisioning
Receivers & amplifiers
Rechargeable batteries
Recharging
RF energy harvesting
Traveling salesman problem
UAVs
Unmanned aerial vehicles
Wireless communications
wireless power transfer
Wireless power transmission
title In Situ MIMO-WPT Recharging of UAVs Using Intelligent Flying Energy Sources
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20MIMO-WPT%20Recharging%20of%20UAVs%20Using%20Intelligent%20Flying%20Energy%20Sources&rft.jtitle=Drones%20(Basel)&rft.au=Hoseini,%20Sayed%20Amir&rft.date=2021-09-01&rft.volume=5&rft.issue=3&rft.spage=89&rft.pages=89-&rft.issn=2504-446X&rft.eissn=2504-446X&rft_id=info:doi/10.3390/drones5030089&rft_dat=%3Cproquest_doaj_%3E2576400059%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-40c52222b06de0add14e33699f20ec165b0d9341d07c6007b7c968fa781c79df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576400059&rft_id=info:pmid/&rfr_iscdi=true