Loading…

Adaptive Observer-Based Fault Detection and Fault-Tolerant Control of Quadrotors under Rotor Failure Conditions

This paper aims to propose a strategy for the flight control of quad-rotors under single rotor failure conditions. The proposed control strategy consists of two stages—fault detection (FD) and fault tolerant control (FTC). A dual observer-based strategy for FD and fault estimation is developed. With...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-05, Vol.10 (10), p.3503
Main Authors: Lien, Yu-Hsuan, Peng, Chao-Chung, Chen, Yi-Hsuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper aims to propose a strategy for the flight control of quad-rotors under single rotor failure conditions. The proposed control strategy consists of two stages—fault detection (FD) and fault tolerant control (FTC). A dual observer-based strategy for FD and fault estimation is developed. With the combination of the results from both observers, the decision making in whether a fault actually happened or the observed anomaly was caused by an external disturbance could be distinguished. Following the FD result, a control strategy for normal flight, as well as the abnormal one, is presented. The FTC considers a real-time coordinate transformation scheme to manipulate the target angles for the quad-rotor to follow a prescribed trajectory. When a rotor fault happens, it is going to be detected by the dual observers and then the FTC is activated to stabilize the system such that the trajectory following task can still be fulfilled. Furthermore, in order to achieve robust flight in the presence of external wind perturbation, the sliding mode control (SMC) theory is further integrated. Simulations illustrate the effectiveness and feasibility of the proposed method.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10103503