Loading…

Scalable Distributed State Estimation in UTM Context

This article proposes a novel approach to the Distributed State Estimation (DSE) problem for a set of co-operating UAVs equipped with heterogeneous on board sensors capable of exploiting certain characteristics typical of the UAS Traffic Management (UTM) context, such as high traffic density and the...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-05, Vol.20 (9), p.2682
Main Authors: Cicala, Marco, D'Amato, Egidio, Notaro, Immacolata, Mattei, Massimiliano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-9e5f395cb112a1de0128ffac3097c47d44345c2ad38de834d00b6210ea0fe8f53
cites cdi_FETCH-LOGICAL-c441t-9e5f395cb112a1de0128ffac3097c47d44345c2ad38de834d00b6210ea0fe8f53
container_end_page
container_issue 9
container_start_page 2682
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Cicala, Marco
D'Amato, Egidio
Notaro, Immacolata
Mattei, Massimiliano
description This article proposes a novel approach to the Distributed State Estimation (DSE) problem for a set of co-operating UAVs equipped with heterogeneous on board sensors capable of exploiting certain characteristics typical of the UAS Traffic Management (UTM) context, such as high traffic density and the presence of limited range, Vehicle-to-Vehicle communication devices. The proposed algorithm is based on a scalable decentralized Kalman Filter derived from the Internodal Transformation Theory enhanced on the basis of the Consensus Theory. The general benefit of the proposed algorithm consists of, on the one hand, reducing the estimation problem to smaller local sub-problems, through a self-organization process of the local estimating nodes in response to the time varying communication topology; and on the other hand, of exploiting measures carried out nearby in order to improve the accuracy of the local estimates. In the UTM context, this enables each vehicle to estimate both its own position and velocity, as well as those of the neighboring vehicles, using both on board measurements and information transmitted by neighboring vehicles. A numerical simulation in a simplified UTM scenario is presented, in order to illustrate the salient aspects of the proposed algorithm.
doi_str_mv 10.3390/s20092682
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e40047df09df49d3a95fbb31d5b3905f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e40047df09df49d3a95fbb31d5b3905f</doaj_id><sourcerecordid>2402434935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-9e5f395cb112a1de0128ffac3097c47d44345c2ad38de834d00b6210ea0fe8f53</originalsourceid><addsrcrecordid>eNpVkUFPHDEMhaOqqNClh_4BNMf2sMWJMzvJBQkttEUCcQDOUSZxaNDsBJIsov--A0tXcIoVP31-9mPsK4cfiBoOiwDQYqHEB7bHpZBzJQR8fFPvss-l3AEIRFSf2C4K1B1XfI_JK2cH2w_UnMRSc-zXlXxzVW2l5rTUuLI1prGJY3NzfdEs01jpqe6znWCHQl9e3xm7-Xl6vfw9P7_8dbY8Pp87KXmda2oD6tb1nAvLPQEXKgTrEHTnZOelRNk6YT0qTwqlB-gXggNZCKRCizN2tuH6ZO_MfZ7c5L8m2WhePlK-NTbX6AYyJAEmZADtg9QerW5D3yP3bT9daPIxY0cb1v26X5F3NNZsh3fQ950x_jG36dF0QqpusZgA314BOT2sqVSzisXRMNiR0roYIUFMC2l89v19I3U5lZIpbMdwMM-JmW1ik_bgra-t8n9E-A8wKo_v</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402434935</pqid></control><display><type>article</type><title>Scalable Distributed State Estimation in UTM Context</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Cicala, Marco ; D'Amato, Egidio ; Notaro, Immacolata ; Mattei, Massimiliano</creator><creatorcontrib>Cicala, Marco ; D'Amato, Egidio ; Notaro, Immacolata ; Mattei, Massimiliano</creatorcontrib><description>This article proposes a novel approach to the Distributed State Estimation (DSE) problem for a set of co-operating UAVs equipped with heterogeneous on board sensors capable of exploiting certain characteristics typical of the UAS Traffic Management (UTM) context, such as high traffic density and the presence of limited range, Vehicle-to-Vehicle communication devices. The proposed algorithm is based on a scalable decentralized Kalman Filter derived from the Internodal Transformation Theory enhanced on the basis of the Consensus Theory. The general benefit of the proposed algorithm consists of, on the one hand, reducing the estimation problem to smaller local sub-problems, through a self-organization process of the local estimating nodes in response to the time varying communication topology; and on the other hand, of exploiting measures carried out nearby in order to improve the accuracy of the local estimates. In the UTM context, this enables each vehicle to estimate both its own position and velocity, as well as those of the neighboring vehicles, using both on board measurements and information transmitted by neighboring vehicles. A numerical simulation in a simplified UTM scenario is presented, in order to illustrate the salient aspects of the proposed algorithm.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20092682</identifier><identifier>PMID: 32397181</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>consensus theory ; distributed state estimation ; multiple UAV navigation ; navigation in GPS/GNSS-denied environments ; UAS traffic management</subject><ispartof>Sensors (Basel, Switzerland), 2020-05, Vol.20 (9), p.2682</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-9e5f395cb112a1de0128ffac3097c47d44345c2ad38de834d00b6210ea0fe8f53</citedby><cites>FETCH-LOGICAL-c441t-9e5f395cb112a1de0128ffac3097c47d44345c2ad38de834d00b6210ea0fe8f53</cites><orcidid>0000-0002-2766-3862 ; 0000-0002-5236-2842 ; 0000-0001-7997-039X ; 0000-0001-7951-6584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248766/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248766/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32397181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cicala, Marco</creatorcontrib><creatorcontrib>D'Amato, Egidio</creatorcontrib><creatorcontrib>Notaro, Immacolata</creatorcontrib><creatorcontrib>Mattei, Massimiliano</creatorcontrib><title>Scalable Distributed State Estimation in UTM Context</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This article proposes a novel approach to the Distributed State Estimation (DSE) problem for a set of co-operating UAVs equipped with heterogeneous on board sensors capable of exploiting certain characteristics typical of the UAS Traffic Management (UTM) context, such as high traffic density and the presence of limited range, Vehicle-to-Vehicle communication devices. The proposed algorithm is based on a scalable decentralized Kalman Filter derived from the Internodal Transformation Theory enhanced on the basis of the Consensus Theory. The general benefit of the proposed algorithm consists of, on the one hand, reducing the estimation problem to smaller local sub-problems, through a self-organization process of the local estimating nodes in response to the time varying communication topology; and on the other hand, of exploiting measures carried out nearby in order to improve the accuracy of the local estimates. In the UTM context, this enables each vehicle to estimate both its own position and velocity, as well as those of the neighboring vehicles, using both on board measurements and information transmitted by neighboring vehicles. A numerical simulation in a simplified UTM scenario is presented, in order to illustrate the salient aspects of the proposed algorithm.</description><subject>consensus theory</subject><subject>distributed state estimation</subject><subject>multiple UAV navigation</subject><subject>navigation in GPS/GNSS-denied environments</subject><subject>UAS traffic management</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUFPHDEMhaOqqNClh_4BNMf2sMWJMzvJBQkttEUCcQDOUSZxaNDsBJIsov--A0tXcIoVP31-9mPsK4cfiBoOiwDQYqHEB7bHpZBzJQR8fFPvss-l3AEIRFSf2C4K1B1XfI_JK2cH2w_UnMRSc-zXlXxzVW2l5rTUuLI1prGJY3NzfdEs01jpqe6znWCHQl9e3xm7-Xl6vfw9P7_8dbY8Pp87KXmda2oD6tb1nAvLPQEXKgTrEHTnZOelRNk6YT0qTwqlB-gXggNZCKRCizN2tuH6ZO_MfZ7c5L8m2WhePlK-NTbX6AYyJAEmZADtg9QerW5D3yP3bT9daPIxY0cb1v26X5F3NNZsh3fQ950x_jG36dF0QqpusZgA314BOT2sqVSzisXRMNiR0roYIUFMC2l89v19I3U5lZIpbMdwMM-JmW1ik_bgra-t8n9E-A8wKo_v</recordid><startdate>20200508</startdate><enddate>20200508</enddate><creator>Cicala, Marco</creator><creator>D'Amato, Egidio</creator><creator>Notaro, Immacolata</creator><creator>Mattei, Massimiliano</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2766-3862</orcidid><orcidid>https://orcid.org/0000-0002-5236-2842</orcidid><orcidid>https://orcid.org/0000-0001-7997-039X</orcidid><orcidid>https://orcid.org/0000-0001-7951-6584</orcidid></search><sort><creationdate>20200508</creationdate><title>Scalable Distributed State Estimation in UTM Context</title><author>Cicala, Marco ; D'Amato, Egidio ; Notaro, Immacolata ; Mattei, Massimiliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-9e5f395cb112a1de0128ffac3097c47d44345c2ad38de834d00b6210ea0fe8f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>consensus theory</topic><topic>distributed state estimation</topic><topic>multiple UAV navigation</topic><topic>navigation in GPS/GNSS-denied environments</topic><topic>UAS traffic management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cicala, Marco</creatorcontrib><creatorcontrib>D'Amato, Egidio</creatorcontrib><creatorcontrib>Notaro, Immacolata</creatorcontrib><creatorcontrib>Mattei, Massimiliano</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cicala, Marco</au><au>D'Amato, Egidio</au><au>Notaro, Immacolata</au><au>Mattei, Massimiliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Distributed State Estimation in UTM Context</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-05-08</date><risdate>2020</risdate><volume>20</volume><issue>9</issue><spage>2682</spage><pages>2682-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This article proposes a novel approach to the Distributed State Estimation (DSE) problem for a set of co-operating UAVs equipped with heterogeneous on board sensors capable of exploiting certain characteristics typical of the UAS Traffic Management (UTM) context, such as high traffic density and the presence of limited range, Vehicle-to-Vehicle communication devices. The proposed algorithm is based on a scalable decentralized Kalman Filter derived from the Internodal Transformation Theory enhanced on the basis of the Consensus Theory. The general benefit of the proposed algorithm consists of, on the one hand, reducing the estimation problem to smaller local sub-problems, through a self-organization process of the local estimating nodes in response to the time varying communication topology; and on the other hand, of exploiting measures carried out nearby in order to improve the accuracy of the local estimates. In the UTM context, this enables each vehicle to estimate both its own position and velocity, as well as those of the neighboring vehicles, using both on board measurements and information transmitted by neighboring vehicles. A numerical simulation in a simplified UTM scenario is presented, in order to illustrate the salient aspects of the proposed algorithm.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>32397181</pmid><doi>10.3390/s20092682</doi><orcidid>https://orcid.org/0000-0002-2766-3862</orcidid><orcidid>https://orcid.org/0000-0002-5236-2842</orcidid><orcidid>https://orcid.org/0000-0001-7997-039X</orcidid><orcidid>https://orcid.org/0000-0001-7951-6584</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-05, Vol.20 (9), p.2682
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e40047df09df49d3a95fbb31d5b3905f
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects consensus theory
distributed state estimation
multiple UAV navigation
navigation in GPS/GNSS-denied environments
UAS traffic management
title Scalable Distributed State Estimation in UTM Context
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Distributed%20State%20Estimation%20in%20UTM%20Context&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Cicala,%20Marco&rft.date=2020-05-08&rft.volume=20&rft.issue=9&rft.spage=2682&rft.pages=2682-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20092682&rft_dat=%3Cproquest_doaj_%3E2402434935%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-9e5f395cb112a1de0128ffac3097c47d44345c2ad38de834d00b6210ea0fe8f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402434935&rft_id=info:pmid/32397181&rfr_iscdi=true