Loading…

Energy cover crops for biogas production increase soil organic carbon stocks: A modeling approach

Energy cover crops for biogas production through anaerobic digestion (AD) are inserted between two primary crops. They replace either bare soil or nonharvested cover crops, and their management is usually intensified to produce more biomass. They allow the production of renewable energy as well as d...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology. Bioenergy 2023-02, Vol.15 (2), p.224-238
Main Authors: Levavasseur, Florent, Kouakou, Patrice K., Constantin, Julie, Cresson, Romain, Ferchaud, Fabien, Girault, Romain, Jean‐Baptiste, Vincent, Lagrange, Hélène, Marsac, Sylvain, Pellerin, Sylvain, Houot, Sabine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4378-f178f59fe47ff063a925371e5e3dbfa32f729a968003a7eca589e21a08cedcb33
cites cdi_FETCH-LOGICAL-c4378-f178f59fe47ff063a925371e5e3dbfa32f729a968003a7eca589e21a08cedcb33
container_end_page 238
container_issue 2
container_start_page 224
container_title Global change biology. Bioenergy
container_volume 15
creator Levavasseur, Florent
Kouakou, Patrice K.
Constantin, Julie
Cresson, Romain
Ferchaud, Fabien
Girault, Romain
Jean‐Baptiste, Vincent
Lagrange, Hélène
Marsac, Sylvain
Pellerin, Sylvain
Houot, Sabine
description Energy cover crops for biogas production through anaerobic digestion (AD) are inserted between two primary crops. They replace either bare soil or nonharvested cover crops, and their management is usually intensified to produce more biomass. They allow the production of renewable energy as well as digestate, used as an organic fertilizer, without directly competing with food production. Because of the increased biomass production and export and of the return of a digested biomass to the soil, the impact of energy cover crops on soil organic carbon (SOC) is questioned. The objective of this paper was to study the difference in SOC stocks induced by the introduction of energy cover crops for AD coupled with the application of the resulting amount of digestate. We used the AD model Sys‐Metha combined with the soil C model AMG to simulate SOC stocks for 13 case studies in France, with scenarios comparing different intercrop management practices, with or without cover crops, harvested or not. Our results indicated that the higher biomass production of energy cover crops (from 6.7 to 11.1 t DM ha−1) in comparison with nonharvested cover crops (2 t DM ha−1) or bare soil led to higher humified C input (belowground input and digestate), despite the high C fraction exported in AD. This resulted in an increase in SOC stocks in comparison with nonharvested cover crops or bare soil (from 0.01 to 0.12 t C ha−1 year−1 over 30 years). The uncertainties in the model parameters did not modify these results. However, in the case of equal biomass production between energy cover crops and nonharvested cover crops, SOC stocks would be lower with energy cover crops. Résumé Les cultures intermédiaires à vocation énergétique (CIVE) pour la production de biogaz par méthanisation sont insérées entre deux cultures principales. Elles remplacent soit le sol nu, soit des cultures intermédiaires non récoltées. Leur gestion est généralement intensifiée pour produire davantage de biomasse. La méthanisation des CIVE permet la production d’énergie renouvelable ainsi que de digestat, utilisé comme engrais organique, sans entrer directement en concurrence avec la production alimentaire. En raison de l’augmentation de la production et de l’exportation de biomasse et du retour au sol d’une biomasse digérée, l’impact des CIVE sur le carbone organique du sol (SOC) est questionné. L’objectif de cet article était d’étudier la différence de stocks de carbone organique du sol induite par l’introductio
doi_str_mv 10.1111/gcbb.13018
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e40e76735a884e6a915ca0d3f49cfb52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e40e76735a884e6a915ca0d3f49cfb52</doaj_id><sourcerecordid>2762607925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4378-f178f59fe47ff063a925371e5e3dbfa32f729a968003a7eca589e21a08cedcb33</originalsourceid><addsrcrecordid>eNp9UcFuGyEQRVUqNXFyyRcg9RbJKSwLLL05lutastRLekaz7LDF3SwO2In898XZpsdyAc289-YNj5Bbzu55OV9617b3XDDefCCXXEs955rpi_e3MuITucp5x5iSiptLAqsRU3-iLr5goi7FfaY-JtqG2EOm-xS7ozuEONIwuoSQkeYYBhpTD2Nw1EFqSzMfovudv9IFfYodDmHsKewLGdyva_LRw5Dx5u89Iz-_rR6X3-fbH-vNcrGdu1roZu65brw0HmvtPVMCTCWF5ihRdK0HUXldGTCqYUyARgeyMVhxYI3DzrVCzMhm0u0i7Ow-hSdIJxsh2LdCMWwhHYIb0GLNUCstJDRNjQoMlw5YJ3xtnG9lVbQ-T1plhecj5oPdxWMai31baVUpps_uZuRuQpVvyzmh_zeVM3uOw57jsG9xFDCfwK9hwNN_kHa9fHiYOH8AtYCNGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762607925</pqid></control><display><type>article</type><title>Energy cover crops for biogas production increase soil organic carbon stocks: A modeling approach</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Levavasseur, Florent ; Kouakou, Patrice K. ; Constantin, Julie ; Cresson, Romain ; Ferchaud, Fabien ; Girault, Romain ; Jean‐Baptiste, Vincent ; Lagrange, Hélène ; Marsac, Sylvain ; Pellerin, Sylvain ; Houot, Sabine</creator><creatorcontrib>Levavasseur, Florent ; Kouakou, Patrice K. ; Constantin, Julie ; Cresson, Romain ; Ferchaud, Fabien ; Girault, Romain ; Jean‐Baptiste, Vincent ; Lagrange, Hélène ; Marsac, Sylvain ; Pellerin, Sylvain ; Houot, Sabine</creatorcontrib><description>Energy cover crops for biogas production through anaerobic digestion (AD) are inserted between two primary crops. They replace either bare soil or nonharvested cover crops, and their management is usually intensified to produce more biomass. They allow the production of renewable energy as well as digestate, used as an organic fertilizer, without directly competing with food production. Because of the increased biomass production and export and of the return of a digested biomass to the soil, the impact of energy cover crops on soil organic carbon (SOC) is questioned. The objective of this paper was to study the difference in SOC stocks induced by the introduction of energy cover crops for AD coupled with the application of the resulting amount of digestate. We used the AD model Sys‐Metha combined with the soil C model AMG to simulate SOC stocks for 13 case studies in France, with scenarios comparing different intercrop management practices, with or without cover crops, harvested or not. Our results indicated that the higher biomass production of energy cover crops (from 6.7 to 11.1 t DM ha−1) in comparison with nonharvested cover crops (2 t DM ha−1) or bare soil led to higher humified C input (belowground input and digestate), despite the high C fraction exported in AD. This resulted in an increase in SOC stocks in comparison with nonharvested cover crops or bare soil (from 0.01 to 0.12 t C ha−1 year−1 over 30 years). The uncertainties in the model parameters did not modify these results. However, in the case of equal biomass production between energy cover crops and nonharvested cover crops, SOC stocks would be lower with energy cover crops. Résumé Les cultures intermédiaires à vocation énergétique (CIVE) pour la production de biogaz par méthanisation sont insérées entre deux cultures principales. Elles remplacent soit le sol nu, soit des cultures intermédiaires non récoltées. Leur gestion est généralement intensifiée pour produire davantage de biomasse. La méthanisation des CIVE permet la production d’énergie renouvelable ainsi que de digestat, utilisé comme engrais organique, sans entrer directement en concurrence avec la production alimentaire. En raison de l’augmentation de la production et de l’exportation de biomasse et du retour au sol d’une biomasse digérée, l’impact des CIVE sur le carbone organique du sol (SOC) est questionné. L’objectif de cet article était d’étudier la différence de stocks de carbone organique du sol induite par l’introduction de CIVE couplée à l’application de la quantité résultante de digestat. Nous avons utilisé le modèle de méthanisation Sys‐Metha combiné au modèle de carbone du sol AMG pour simuler les stocks de carbone pour 13 cas d’étude en France, avec des scénarios comparant différentes pratiques de gestion de l’interculture, avec ou sans culture intermédiaire, récoltée ou non. Nos résultats indiquent que la production plus élevée de biomasse des CIVE (de 6,7 à 11,1 t MS ha−1) par rapport aux cultures intermédiaires non récoltées (2 t MS ha−1) ou au sol nu conduit à un apport plus élevé de C humifié (apport souterrain et digestat), malgré la fraction élevée de C exportée dans le méthaniseur. Il en résulte une augmentation des stocks de carbone par rapport aux cultures intermédiaires non récoltées ou au sol nu (de 0,01 à 0,12 t C ha−1 an‐1 sur 30 ans). Les incertitudes sur les paramètres du modèle ne modifient pas ces résultats. Toutefois, dans le cas d’une production de biomasse égale entre les CIVE et les cultures intermédiaires non récoltées, les stocks de carbone seraient plus faibles avec les CIVE. The anaerobic digestion of cover crops for biogas production does not compete directly with food production and is promoted in various countries. Some questions arose regarding the effects of energy cover crops on soil organic carbon (SOC) stocks. Using a modeling approach and considering actual field practices, we showed that energy cover crops increase SOC stocks in comparison with bare soil or nonharvested cover crops due to an increase in biomass production and despite C exported for biogas production. However, nonharvested cover crops increase SOC more in the case of a similar biomass production than energy cover crops.</description><identifier>ISSN: 1757-1693</identifier><identifier>EISSN: 1757-1707</identifier><identifier>DOI: 10.1111/gcbb.13018</identifier><language>eng</language><publisher>Oxford: John Wiley &amp; Sons, Inc</publisher><subject>Agricultural practices ; Alternative energy sources ; AMG ; Anaerobic digestion ; arable crops ; Barley ; Biogas ; Biomass ; Biomass energy production ; Carbon ; Case studies ; Climate change ; Corn ; cover crop ; Cover crops ; Crop production ; Crops ; Food production ; France ; modeling ; Organic carbon ; Organic fertilizers ; Organic soils ; Parameter modification ; Production increases ; Renewable energy ; SOC ; Soils ; Sorghum ; Soybeans ; Sys‐Metha ; Wheat</subject><ispartof>Global change biology. Bioenergy, 2023-02, Vol.15 (2), p.224-238</ispartof><rights>2022 The Authors. GCB Bioenergy published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4378-f178f59fe47ff063a925371e5e3dbfa32f729a968003a7eca589e21a08cedcb33</citedby><cites>FETCH-LOGICAL-c4378-f178f59fe47ff063a925371e5e3dbfa32f729a968003a7eca589e21a08cedcb33</cites><orcidid>0000-0001-9647-5374 ; 0000-0002-2078-3570 ; 0000-0002-2164-3334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2762607925/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2762607925?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,44590,46052,46476,75126</link.rule.ids></links><search><creatorcontrib>Levavasseur, Florent</creatorcontrib><creatorcontrib>Kouakou, Patrice K.</creatorcontrib><creatorcontrib>Constantin, Julie</creatorcontrib><creatorcontrib>Cresson, Romain</creatorcontrib><creatorcontrib>Ferchaud, Fabien</creatorcontrib><creatorcontrib>Girault, Romain</creatorcontrib><creatorcontrib>Jean‐Baptiste, Vincent</creatorcontrib><creatorcontrib>Lagrange, Hélène</creatorcontrib><creatorcontrib>Marsac, Sylvain</creatorcontrib><creatorcontrib>Pellerin, Sylvain</creatorcontrib><creatorcontrib>Houot, Sabine</creatorcontrib><title>Energy cover crops for biogas production increase soil organic carbon stocks: A modeling approach</title><title>Global change biology. Bioenergy</title><description>Energy cover crops for biogas production through anaerobic digestion (AD) are inserted between two primary crops. They replace either bare soil or nonharvested cover crops, and their management is usually intensified to produce more biomass. They allow the production of renewable energy as well as digestate, used as an organic fertilizer, without directly competing with food production. Because of the increased biomass production and export and of the return of a digested biomass to the soil, the impact of energy cover crops on soil organic carbon (SOC) is questioned. The objective of this paper was to study the difference in SOC stocks induced by the introduction of energy cover crops for AD coupled with the application of the resulting amount of digestate. We used the AD model Sys‐Metha combined with the soil C model AMG to simulate SOC stocks for 13 case studies in France, with scenarios comparing different intercrop management practices, with or without cover crops, harvested or not. Our results indicated that the higher biomass production of energy cover crops (from 6.7 to 11.1 t DM ha−1) in comparison with nonharvested cover crops (2 t DM ha−1) or bare soil led to higher humified C input (belowground input and digestate), despite the high C fraction exported in AD. This resulted in an increase in SOC stocks in comparison with nonharvested cover crops or bare soil (from 0.01 to 0.12 t C ha−1 year−1 over 30 years). The uncertainties in the model parameters did not modify these results. However, in the case of equal biomass production between energy cover crops and nonharvested cover crops, SOC stocks would be lower with energy cover crops. Résumé Les cultures intermédiaires à vocation énergétique (CIVE) pour la production de biogaz par méthanisation sont insérées entre deux cultures principales. Elles remplacent soit le sol nu, soit des cultures intermédiaires non récoltées. Leur gestion est généralement intensifiée pour produire davantage de biomasse. La méthanisation des CIVE permet la production d’énergie renouvelable ainsi que de digestat, utilisé comme engrais organique, sans entrer directement en concurrence avec la production alimentaire. En raison de l’augmentation de la production et de l’exportation de biomasse et du retour au sol d’une biomasse digérée, l’impact des CIVE sur le carbone organique du sol (SOC) est questionné. L’objectif de cet article était d’étudier la différence de stocks de carbone organique du sol induite par l’introduction de CIVE couplée à l’application de la quantité résultante de digestat. Nous avons utilisé le modèle de méthanisation Sys‐Metha combiné au modèle de carbone du sol AMG pour simuler les stocks de carbone pour 13 cas d’étude en France, avec des scénarios comparant différentes pratiques de gestion de l’interculture, avec ou sans culture intermédiaire, récoltée ou non. Nos résultats indiquent que la production plus élevée de biomasse des CIVE (de 6,7 à 11,1 t MS ha−1) par rapport aux cultures intermédiaires non récoltées (2 t MS ha−1) ou au sol nu conduit à un apport plus élevé de C humifié (apport souterrain et digestat), malgré la fraction élevée de C exportée dans le méthaniseur. Il en résulte une augmentation des stocks de carbone par rapport aux cultures intermédiaires non récoltées ou au sol nu (de 0,01 à 0,12 t C ha−1 an‐1 sur 30 ans). Les incertitudes sur les paramètres du modèle ne modifient pas ces résultats. Toutefois, dans le cas d’une production de biomasse égale entre les CIVE et les cultures intermédiaires non récoltées, les stocks de carbone seraient plus faibles avec les CIVE. The anaerobic digestion of cover crops for biogas production does not compete directly with food production and is promoted in various countries. Some questions arose regarding the effects of energy cover crops on soil organic carbon (SOC) stocks. Using a modeling approach and considering actual field practices, we showed that energy cover crops increase SOC stocks in comparison with bare soil or nonharvested cover crops due to an increase in biomass production and despite C exported for biogas production. However, nonharvested cover crops increase SOC more in the case of a similar biomass production than energy cover crops.</description><subject>Agricultural practices</subject><subject>Alternative energy sources</subject><subject>AMG</subject><subject>Anaerobic digestion</subject><subject>arable crops</subject><subject>Barley</subject><subject>Biogas</subject><subject>Biomass</subject><subject>Biomass energy production</subject><subject>Carbon</subject><subject>Case studies</subject><subject>Climate change</subject><subject>Corn</subject><subject>cover crop</subject><subject>Cover crops</subject><subject>Crop production</subject><subject>Crops</subject><subject>Food production</subject><subject>France</subject><subject>modeling</subject><subject>Organic carbon</subject><subject>Organic fertilizers</subject><subject>Organic soils</subject><subject>Parameter modification</subject><subject>Production increases</subject><subject>Renewable energy</subject><subject>SOC</subject><subject>Soils</subject><subject>Sorghum</subject><subject>Soybeans</subject><subject>Sys‐Metha</subject><subject>Wheat</subject><issn>1757-1693</issn><issn>1757-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UcFuGyEQRVUqNXFyyRcg9RbJKSwLLL05lutastRLekaz7LDF3SwO2In898XZpsdyAc289-YNj5Bbzu55OV9617b3XDDefCCXXEs955rpi_e3MuITucp5x5iSiptLAqsRU3-iLr5goi7FfaY-JtqG2EOm-xS7ozuEONIwuoSQkeYYBhpTD2Nw1EFqSzMfovudv9IFfYodDmHsKewLGdyva_LRw5Dx5u89Iz-_rR6X3-fbH-vNcrGdu1roZu65brw0HmvtPVMCTCWF5ihRdK0HUXldGTCqYUyARgeyMVhxYI3DzrVCzMhm0u0i7Ow-hSdIJxsh2LdCMWwhHYIb0GLNUCstJDRNjQoMlw5YJ3xtnG9lVbQ-T1plhecj5oPdxWMai31baVUpps_uZuRuQpVvyzmh_zeVM3uOw57jsG9xFDCfwK9hwNN_kHa9fHiYOH8AtYCNGw</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Levavasseur, Florent</creator><creator>Kouakou, Patrice K.</creator><creator>Constantin, Julie</creator><creator>Cresson, Romain</creator><creator>Ferchaud, Fabien</creator><creator>Girault, Romain</creator><creator>Jean‐Baptiste, Vincent</creator><creator>Lagrange, Hélène</creator><creator>Marsac, Sylvain</creator><creator>Pellerin, Sylvain</creator><creator>Houot, Sabine</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9647-5374</orcidid><orcidid>https://orcid.org/0000-0002-2078-3570</orcidid><orcidid>https://orcid.org/0000-0002-2164-3334</orcidid></search><sort><creationdate>202302</creationdate><title>Energy cover crops for biogas production increase soil organic carbon stocks: A modeling approach</title><author>Levavasseur, Florent ; Kouakou, Patrice K. ; Constantin, Julie ; Cresson, Romain ; Ferchaud, Fabien ; Girault, Romain ; Jean‐Baptiste, Vincent ; Lagrange, Hélène ; Marsac, Sylvain ; Pellerin, Sylvain ; Houot, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4378-f178f59fe47ff063a925371e5e3dbfa32f729a968003a7eca589e21a08cedcb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural practices</topic><topic>Alternative energy sources</topic><topic>AMG</topic><topic>Anaerobic digestion</topic><topic>arable crops</topic><topic>Barley</topic><topic>Biogas</topic><topic>Biomass</topic><topic>Biomass energy production</topic><topic>Carbon</topic><topic>Case studies</topic><topic>Climate change</topic><topic>Corn</topic><topic>cover crop</topic><topic>Cover crops</topic><topic>Crop production</topic><topic>Crops</topic><topic>Food production</topic><topic>France</topic><topic>modeling</topic><topic>Organic carbon</topic><topic>Organic fertilizers</topic><topic>Organic soils</topic><topic>Parameter modification</topic><topic>Production increases</topic><topic>Renewable energy</topic><topic>SOC</topic><topic>Soils</topic><topic>Sorghum</topic><topic>Soybeans</topic><topic>Sys‐Metha</topic><topic>Wheat</topic><toplevel>online_resources</toplevel><creatorcontrib>Levavasseur, Florent</creatorcontrib><creatorcontrib>Kouakou, Patrice K.</creatorcontrib><creatorcontrib>Constantin, Julie</creatorcontrib><creatorcontrib>Cresson, Romain</creatorcontrib><creatorcontrib>Ferchaud, Fabien</creatorcontrib><creatorcontrib>Girault, Romain</creatorcontrib><creatorcontrib>Jean‐Baptiste, Vincent</creatorcontrib><creatorcontrib>Lagrange, Hélène</creatorcontrib><creatorcontrib>Marsac, Sylvain</creatorcontrib><creatorcontrib>Pellerin, Sylvain</creatorcontrib><creatorcontrib>Houot, Sabine</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Global change biology. Bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levavasseur, Florent</au><au>Kouakou, Patrice K.</au><au>Constantin, Julie</au><au>Cresson, Romain</au><au>Ferchaud, Fabien</au><au>Girault, Romain</au><au>Jean‐Baptiste, Vincent</au><au>Lagrange, Hélène</au><au>Marsac, Sylvain</au><au>Pellerin, Sylvain</au><au>Houot, Sabine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy cover crops for biogas production increase soil organic carbon stocks: A modeling approach</atitle><jtitle>Global change biology. Bioenergy</jtitle><date>2023-02</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>224</spage><epage>238</epage><pages>224-238</pages><issn>1757-1693</issn><eissn>1757-1707</eissn><abstract>Energy cover crops for biogas production through anaerobic digestion (AD) are inserted between two primary crops. They replace either bare soil or nonharvested cover crops, and their management is usually intensified to produce more biomass. They allow the production of renewable energy as well as digestate, used as an organic fertilizer, without directly competing with food production. Because of the increased biomass production and export and of the return of a digested biomass to the soil, the impact of energy cover crops on soil organic carbon (SOC) is questioned. The objective of this paper was to study the difference in SOC stocks induced by the introduction of energy cover crops for AD coupled with the application of the resulting amount of digestate. We used the AD model Sys‐Metha combined with the soil C model AMG to simulate SOC stocks for 13 case studies in France, with scenarios comparing different intercrop management practices, with or without cover crops, harvested or not. Our results indicated that the higher biomass production of energy cover crops (from 6.7 to 11.1 t DM ha−1) in comparison with nonharvested cover crops (2 t DM ha−1) or bare soil led to higher humified C input (belowground input and digestate), despite the high C fraction exported in AD. This resulted in an increase in SOC stocks in comparison with nonharvested cover crops or bare soil (from 0.01 to 0.12 t C ha−1 year−1 over 30 years). The uncertainties in the model parameters did not modify these results. However, in the case of equal biomass production between energy cover crops and nonharvested cover crops, SOC stocks would be lower with energy cover crops. Résumé Les cultures intermédiaires à vocation énergétique (CIVE) pour la production de biogaz par méthanisation sont insérées entre deux cultures principales. Elles remplacent soit le sol nu, soit des cultures intermédiaires non récoltées. Leur gestion est généralement intensifiée pour produire davantage de biomasse. La méthanisation des CIVE permet la production d’énergie renouvelable ainsi que de digestat, utilisé comme engrais organique, sans entrer directement en concurrence avec la production alimentaire. En raison de l’augmentation de la production et de l’exportation de biomasse et du retour au sol d’une biomasse digérée, l’impact des CIVE sur le carbone organique du sol (SOC) est questionné. L’objectif de cet article était d’étudier la différence de stocks de carbone organique du sol induite par l’introduction de CIVE couplée à l’application de la quantité résultante de digestat. Nous avons utilisé le modèle de méthanisation Sys‐Metha combiné au modèle de carbone du sol AMG pour simuler les stocks de carbone pour 13 cas d’étude en France, avec des scénarios comparant différentes pratiques de gestion de l’interculture, avec ou sans culture intermédiaire, récoltée ou non. Nos résultats indiquent que la production plus élevée de biomasse des CIVE (de 6,7 à 11,1 t MS ha−1) par rapport aux cultures intermédiaires non récoltées (2 t MS ha−1) ou au sol nu conduit à un apport plus élevé de C humifié (apport souterrain et digestat), malgré la fraction élevée de C exportée dans le méthaniseur. Il en résulte une augmentation des stocks de carbone par rapport aux cultures intermédiaires non récoltées ou au sol nu (de 0,01 à 0,12 t C ha−1 an‐1 sur 30 ans). Les incertitudes sur les paramètres du modèle ne modifient pas ces résultats. Toutefois, dans le cas d’une production de biomasse égale entre les CIVE et les cultures intermédiaires non récoltées, les stocks de carbone seraient plus faibles avec les CIVE. The anaerobic digestion of cover crops for biogas production does not compete directly with food production and is promoted in various countries. Some questions arose regarding the effects of energy cover crops on soil organic carbon (SOC) stocks. Using a modeling approach and considering actual field practices, we showed that energy cover crops increase SOC stocks in comparison with bare soil or nonharvested cover crops due to an increase in biomass production and despite C exported for biogas production. However, nonharvested cover crops increase SOC more in the case of a similar biomass production than energy cover crops.</abstract><cop>Oxford</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/gcbb.13018</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9647-5374</orcidid><orcidid>https://orcid.org/0000-0002-2078-3570</orcidid><orcidid>https://orcid.org/0000-0002-2164-3334</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-1693
ispartof Global change biology. Bioenergy, 2023-02, Vol.15 (2), p.224-238
issn 1757-1693
1757-1707
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e40e76735a884e6a915ca0d3f49cfb52
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Agricultural practices
Alternative energy sources
AMG
Anaerobic digestion
arable crops
Barley
Biogas
Biomass
Biomass energy production
Carbon
Case studies
Climate change
Corn
cover crop
Cover crops
Crop production
Crops
Food production
France
modeling
Organic carbon
Organic fertilizers
Organic soils
Parameter modification
Production increases
Renewable energy
SOC
Soils
Sorghum
Soybeans
Sys‐Metha
Wheat
title Energy cover crops for biogas production increase soil organic carbon stocks: A modeling approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20cover%20crops%20for%20biogas%20production%20increase%20soil%20organic%20carbon%20stocks:%20A%20modeling%20approach&rft.jtitle=Global%20change%20biology.%20Bioenergy&rft.au=Levavasseur,%20Florent&rft.date=2023-02&rft.volume=15&rft.issue=2&rft.spage=224&rft.epage=238&rft.pages=224-238&rft.issn=1757-1693&rft.eissn=1757-1707&rft_id=info:doi/10.1111/gcbb.13018&rft_dat=%3Cproquest_doaj_%3E2762607925%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4378-f178f59fe47ff063a925371e5e3dbfa32f729a968003a7eca589e21a08cedcb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2762607925&rft_id=info:pmid/&rfr_iscdi=true