Loading…
Stereotactic ablative radiotherapy (SABR) as primary, adjuvant, consolidation and re-treatment option in pancreatic cancer: scope for dose escalation and lessons for toxicity
Stereotactic ablative radiotherapy (SABR) offers an alternative treatment for pancreatic cancer, with the potential for improved tumour control and reduced toxicity compared with conventional therapies. However, optimal dose planning and delivery strategies are unelucidated and gastro-intestinal (GI...
Saved in:
Published in: | Radiation oncology (London, England) England), 2018-10, Vol.13 (1), p.204-12, Article 204 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stereotactic ablative radiotherapy (SABR) offers an alternative treatment for pancreatic cancer, with the potential for improved tumour control and reduced toxicity compared with conventional therapies. However, optimal dose planning and delivery strategies are unelucidated and gastro-intestinal (GI) toxicity remains a key concern.
Patients with inoperable non-metastatic pancreatic cancer who received CyberKnife® SABR (18-36 Gy) in three fractions as primary, adjuvant, consolidation or re-treatment options were studied. Patient individualised planning and delivery variables were collected and their impact on patient outcome examined. Linear-quadratic (LQ) radiobiology modelling methods were applied to assess SABR parameters against a conventional fractionated radiotherapy schedule.
In total 42 patients were included, 37 (88%) of whom had stage T4 disease. SABR was used > 6 months post-primary therapy to re-treat residual disease in 11 (26.2%) patients and relapsed disease in nine (21.4%) patients. SABR was an adjuvant to other primary therapy for 14 (33.3%) patients and was the sole primary therapy for eight (19.0%) patients. The mean (95% CI) planning target volume (PTV), prescription isodose, percentage cover, minimum dose to PTV and biological effective dose (BED) were 76.3(63.8-88.7) cc, 67.3(65.2-69.5)%, 96.6(95.5-97.7)%, 22.3(21.0-23.6) Gy and 50.3(47.7-53.0) Gy, respectively. Only 3/37 (8.1%) patients experienced Grade 3 acute toxicities. Two (4.8%) patients converted to resectable status and median freedom-from-local-progression (FFLP) and overall survival (OS) were 9.8 and 8.4 months, respectively. No late toxicity was experienced in 27/32 (84.4%) patients; however, four (12.5%) patients - of whom two had particularly large PTV, two had sub-optimal number of fiducials and three breached organ-at-risk (OAR) constraints-showed Grade 4 duodenal toxicities. Longer delivery time, extended treatment course and reduced percentage coverage additionally associated with late toxicity, likely reflecting parameters typically applied to riskier patients. Larger PTV size and longer treatment course associated with OS. Comparator regimen LQ modelling analysis indicated 50% of patients received minimum PTV doses less potent than a conventional radiotherapy regimen, indicating scope for dose escalation.
The results demonstrate the value of SABR for a range of indications in pancreatic cancer. Dose escalation to increase BED may improve FFLP and OS in inoperable, n |
---|---|
ISSN: | 1748-717X 1748-717X |
DOI: | 10.1186/s13014-018-1138-3 |