Loading…
Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing
Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respect...
Saved in:
Published in: | ISPRS international journal of geo-information 2017-08, Vol.6 (8), p.238 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33 |
container_end_page | |
container_issue | 8 |
container_start_page | 238 |
container_title | ISPRS international journal of geo-information |
container_volume | 6 |
creator | Řezník, Tomáš Lukas, Vojtěch Charvát, Karel Křivánek, Zbyněk Kepka, Michal Herman, Lukáš Řezníková, Helena |
description | Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big) data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big) data collection in agriculture: (1) farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2) agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3) remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains. |
doi_str_mv | 10.3390/ijgi6080238 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e43bea560bfd48d6b7efee514794259a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e43bea560bfd48d6b7efee514794259a</doaj_id><sourcerecordid>oai_doaj_org_article_e43bea560bfd48d6b7efee514794259a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EElXpxA94BKHCi-0kzlhaKJUqFVUwRy_OS-oS6sp2Bv6eQhHqXe7VHc5wGLtO4F7KAh7strUZaBBSn7GBEALGRZGp85N9yUYhbOGQIpFawYCtZjZgiOT52oYPvqa6N9G6Hbc7Pmm9NX0Xe088brzr2w2fkwt7jBY7fvNo21s-w4j81TtDIdhde8UuGuwCjf56yN6fn96mL-Plar6YTpZjI2UWxwpyVecVpsoYSKABUZPJSFGRG22UbhSIDGUOUKHRNWih0lQ0MjGCpKmkHLLFkVs73JZ7bz_Rf5UObfl7ON-W6KM1HZWkZEWYZlA1tdJ1VuXUEKWJygsl0gIPrLsjy3gXgqfmn5dA-aO2PFErvwGqsWwE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing</title><source>Publicly Available Content (ProQuest)</source><creator>Řezník, Tomáš ; Lukas, Vojtěch ; Charvát, Karel ; Křivánek, Zbyněk ; Kepka, Michal ; Herman, Lukáš ; Řezníková, Helena</creator><creatorcontrib>Řezník, Tomáš ; Lukas, Vojtěch ; Charvát, Karel ; Křivánek, Zbyněk ; Kepka, Michal ; Herman, Lukáš ; Řezníková, Helena</creatorcontrib><description>Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big) data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big) data collection in agriculture: (1) farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2) agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3) remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi6080238</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>machinery telemetry ; precision farming ; remote sensing ; wireless sensor network</subject><ispartof>ISPRS international journal of geo-information, 2017-08, Vol.6 (8), p.238</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33</citedby><cites>FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33</cites><orcidid>0000-0001-8051-3305 ; 0000-0003-4106-2569 ; 0000-0001-7331-9686 ; 0000-0002-6279-514X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Řezník, Tomáš</creatorcontrib><creatorcontrib>Lukas, Vojtěch</creatorcontrib><creatorcontrib>Charvát, Karel</creatorcontrib><creatorcontrib>Křivánek, Zbyněk</creatorcontrib><creatorcontrib>Kepka, Michal</creatorcontrib><creatorcontrib>Herman, Lukáš</creatorcontrib><creatorcontrib>Řezníková, Helena</creatorcontrib><title>Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing</title><title>ISPRS international journal of geo-information</title><description>Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big) data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big) data collection in agriculture: (1) farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2) agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3) remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains.</description><subject>machinery telemetry</subject><subject>precision farming</subject><subject>remote sensing</subject><subject>wireless sensor network</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkLFOwzAURS0EElXpxA94BKHCi-0kzlhaKJUqFVUwRy_OS-oS6sp2Bv6eQhHqXe7VHc5wGLtO4F7KAh7strUZaBBSn7GBEALGRZGp85N9yUYhbOGQIpFawYCtZjZgiOT52oYPvqa6N9G6Hbc7Pmm9NX0Xe088brzr2w2fkwt7jBY7fvNo21s-w4j81TtDIdhde8UuGuwCjf56yN6fn96mL-Plar6YTpZjI2UWxwpyVecVpsoYSKABUZPJSFGRG22UbhSIDGUOUKHRNWih0lQ0MjGCpKmkHLLFkVs73JZ7bz_Rf5UObfl7ON-W6KM1HZWkZEWYZlA1tdJ1VuXUEKWJygsl0gIPrLsjy3gXgqfmn5dA-aO2PFErvwGqsWwE</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Řezník, Tomáš</creator><creator>Lukas, Vojtěch</creator><creator>Charvát, Karel</creator><creator>Křivánek, Zbyněk</creator><creator>Kepka, Michal</creator><creator>Herman, Lukáš</creator><creator>Řezníková, Helena</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8051-3305</orcidid><orcidid>https://orcid.org/0000-0003-4106-2569</orcidid><orcidid>https://orcid.org/0000-0001-7331-9686</orcidid><orcidid>https://orcid.org/0000-0002-6279-514X</orcidid></search><sort><creationdate>20170801</creationdate><title>Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing</title><author>Řezník, Tomáš ; Lukas, Vojtěch ; Charvát, Karel ; Křivánek, Zbyněk ; Kepka, Michal ; Herman, Lukáš ; Řezníková, Helena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>machinery telemetry</topic><topic>precision farming</topic><topic>remote sensing</topic><topic>wireless sensor network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Řezník, Tomáš</creatorcontrib><creatorcontrib>Lukas, Vojtěch</creatorcontrib><creatorcontrib>Charvát, Karel</creatorcontrib><creatorcontrib>Křivánek, Zbyněk</creatorcontrib><creatorcontrib>Kepka, Michal</creatorcontrib><creatorcontrib>Herman, Lukáš</creatorcontrib><creatorcontrib>Řezníková, Helena</creatorcontrib><collection>CrossRef</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Řezník, Tomáš</au><au>Lukas, Vojtěch</au><au>Charvát, Karel</au><au>Křivánek, Zbyněk</au><au>Kepka, Michal</au><au>Herman, Lukáš</au><au>Řezníková, Helena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>6</volume><issue>8</issue><spage>238</spage><pages>238-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big) data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big) data collection in agriculture: (1) farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2) agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3) remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains.</abstract><pub>MDPI AG</pub><doi>10.3390/ijgi6080238</doi><orcidid>https://orcid.org/0000-0001-8051-3305</orcidid><orcidid>https://orcid.org/0000-0003-4106-2569</orcidid><orcidid>https://orcid.org/0000-0001-7331-9686</orcidid><orcidid>https://orcid.org/0000-0002-6279-514X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2220-9964 |
ispartof | ISPRS international journal of geo-information, 2017-08, Vol.6 (8), p.238 |
issn | 2220-9964 2220-9964 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e43bea560bfd48d6b7efee514794259a |
source | Publicly Available Content (ProQuest) |
subjects | machinery telemetry precision farming remote sensing wireless sensor network |
title | Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disaster%20Risk%20Reduction%20in%20Agriculture%20through%20Geospatial%20(Big)%20Data%20Processing&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=%C5%98ezn%C3%ADk,%20Tom%C3%A1%C5%A1&rft.date=2017-08-01&rft.volume=6&rft.issue=8&rft.spage=238&rft.pages=238-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi6080238&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e43bea560bfd48d6b7efee514794259a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |