Loading…

Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing

Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respect...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS international journal of geo-information 2017-08, Vol.6 (8), p.238
Main Authors: Řezník, Tomáš, Lukas, Vojtěch, Charvát, Karel, Křivánek, Zbyněk, Kepka, Michal, Herman, Lukáš, Řezníková, Helena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33
cites cdi_FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33
container_end_page
container_issue 8
container_start_page 238
container_title ISPRS international journal of geo-information
container_volume 6
creator Řezník, Tomáš
Lukas, Vojtěch
Charvát, Karel
Křivánek, Zbyněk
Kepka, Michal
Herman, Lukáš
Řezníková, Helena
description Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big) data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big) data collection in agriculture: (1) farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2) agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3) remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains.
doi_str_mv 10.3390/ijgi6080238
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e43bea560bfd48d6b7efee514794259a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e43bea560bfd48d6b7efee514794259a</doaj_id><sourcerecordid>oai_doaj_org_article_e43bea560bfd48d6b7efee514794259a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EElXpxA94BKHCi-0kzlhaKJUqFVUwRy_OS-oS6sp2Bv6eQhHqXe7VHc5wGLtO4F7KAh7strUZaBBSn7GBEALGRZGp85N9yUYhbOGQIpFawYCtZjZgiOT52oYPvqa6N9G6Hbc7Pmm9NX0Xe088brzr2w2fkwt7jBY7fvNo21s-w4j81TtDIdhde8UuGuwCjf56yN6fn96mL-Plar6YTpZjI2UWxwpyVecVpsoYSKABUZPJSFGRG22UbhSIDGUOUKHRNWih0lQ0MjGCpKmkHLLFkVs73JZ7bz_Rf5UObfl7ON-W6KM1HZWkZEWYZlA1tdJ1VuXUEKWJygsl0gIPrLsjy3gXgqfmn5dA-aO2PFErvwGqsWwE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing</title><source>Publicly Available Content (ProQuest)</source><creator>Řezník, Tomáš ; Lukas, Vojtěch ; Charvát, Karel ; Křivánek, Zbyněk ; Kepka, Michal ; Herman, Lukáš ; Řezníková, Helena</creator><creatorcontrib>Řezník, Tomáš ; Lukas, Vojtěch ; Charvát, Karel ; Křivánek, Zbyněk ; Kepka, Michal ; Herman, Lukáš ; Řezníková, Helena</creatorcontrib><description>Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big) data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big) data collection in agriculture: (1) farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2) agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3) remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi6080238</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>machinery telemetry ; precision farming ; remote sensing ; wireless sensor network</subject><ispartof>ISPRS international journal of geo-information, 2017-08, Vol.6 (8), p.238</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33</citedby><cites>FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33</cites><orcidid>0000-0001-8051-3305 ; 0000-0003-4106-2569 ; 0000-0001-7331-9686 ; 0000-0002-6279-514X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Řezník, Tomáš</creatorcontrib><creatorcontrib>Lukas, Vojtěch</creatorcontrib><creatorcontrib>Charvát, Karel</creatorcontrib><creatorcontrib>Křivánek, Zbyněk</creatorcontrib><creatorcontrib>Kepka, Michal</creatorcontrib><creatorcontrib>Herman, Lukáš</creatorcontrib><creatorcontrib>Řezníková, Helena</creatorcontrib><title>Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing</title><title>ISPRS international journal of geo-information</title><description>Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big) data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big) data collection in agriculture: (1) farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2) agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3) remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains.</description><subject>machinery telemetry</subject><subject>precision farming</subject><subject>remote sensing</subject><subject>wireless sensor network</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkLFOwzAURS0EElXpxA94BKHCi-0kzlhaKJUqFVUwRy_OS-oS6sp2Bv6eQhHqXe7VHc5wGLtO4F7KAh7strUZaBBSn7GBEALGRZGp85N9yUYhbOGQIpFawYCtZjZgiOT52oYPvqa6N9G6Hbc7Pmm9NX0Xe088brzr2w2fkwt7jBY7fvNo21s-w4j81TtDIdhde8UuGuwCjf56yN6fn96mL-Plar6YTpZjI2UWxwpyVecVpsoYSKABUZPJSFGRG22UbhSIDGUOUKHRNWih0lQ0MjGCpKmkHLLFkVs73JZ7bz_Rf5UObfl7ON-W6KM1HZWkZEWYZlA1tdJ1VuXUEKWJygsl0gIPrLsjy3gXgqfmn5dA-aO2PFErvwGqsWwE</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Řezník, Tomáš</creator><creator>Lukas, Vojtěch</creator><creator>Charvát, Karel</creator><creator>Křivánek, Zbyněk</creator><creator>Kepka, Michal</creator><creator>Herman, Lukáš</creator><creator>Řezníková, Helena</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8051-3305</orcidid><orcidid>https://orcid.org/0000-0003-4106-2569</orcidid><orcidid>https://orcid.org/0000-0001-7331-9686</orcidid><orcidid>https://orcid.org/0000-0002-6279-514X</orcidid></search><sort><creationdate>20170801</creationdate><title>Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing</title><author>Řezník, Tomáš ; Lukas, Vojtěch ; Charvát, Karel ; Křivánek, Zbyněk ; Kepka, Michal ; Herman, Lukáš ; Řezníková, Helena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>machinery telemetry</topic><topic>precision farming</topic><topic>remote sensing</topic><topic>wireless sensor network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Řezník, Tomáš</creatorcontrib><creatorcontrib>Lukas, Vojtěch</creatorcontrib><creatorcontrib>Charvát, Karel</creatorcontrib><creatorcontrib>Křivánek, Zbyněk</creatorcontrib><creatorcontrib>Kepka, Michal</creatorcontrib><creatorcontrib>Herman, Lukáš</creatorcontrib><creatorcontrib>Řezníková, Helena</creatorcontrib><collection>CrossRef</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Řezník, Tomáš</au><au>Lukas, Vojtěch</au><au>Charvát, Karel</au><au>Křivánek, Zbyněk</au><au>Kepka, Michal</au><au>Herman, Lukáš</au><au>Řezníková, Helena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>6</volume><issue>8</issue><spage>238</spage><pages>238-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big) data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big) data collection in agriculture: (1) farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2) agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3) remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains.</abstract><pub>MDPI AG</pub><doi>10.3390/ijgi6080238</doi><orcidid>https://orcid.org/0000-0001-8051-3305</orcidid><orcidid>https://orcid.org/0000-0003-4106-2569</orcidid><orcidid>https://orcid.org/0000-0001-7331-9686</orcidid><orcidid>https://orcid.org/0000-0002-6279-514X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-9964
ispartof ISPRS international journal of geo-information, 2017-08, Vol.6 (8), p.238
issn 2220-9964
2220-9964
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e43bea560bfd48d6b7efee514794259a
source Publicly Available Content (ProQuest)
subjects machinery telemetry
precision farming
remote sensing
wireless sensor network
title Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disaster%20Risk%20Reduction%20in%20Agriculture%20through%20Geospatial%20(Big)%20Data%20Processing&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=%C5%98ezn%C3%ADk,%20Tom%C3%A1%C5%A1&rft.date=2017-08-01&rft.volume=6&rft.issue=8&rft.spage=238&rft.pages=238-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi6080238&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e43bea560bfd48d6b7efee514794259a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-4074d7ba54cc010f02dec6e4e97c8c48f4026a3700bac8d0824552f31c2e3cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true