Loading…

Contactless Blood Pressure Estimation System Using a Computer Vision System

Blood pressure (BP) is one of the most common vital signs related to cardiovascular diseases. BP is traditionally measured by mercury, aneroid, or digital sphygmomanometers; however, these approaches are restrictive, inconvenient, and need a pressure cuff to be attached directly to the patient. Ther...

Full description

Saved in:
Bibliographic Details
Published in:Inventions (Basel) 2022-09, Vol.7 (3), p.84
Main Authors: Al-Naji, Ali, Fakhri, Ahmed Bashar, Mahmood, Mustafa F, Chahl, Javaan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-1b9cb1e40cca5ecd62ecdfb3e105ecaa2c16587887ed2663434fdc73fad74e23
cites cdi_FETCH-LOGICAL-c449t-1b9cb1e40cca5ecd62ecdfb3e105ecaa2c16587887ed2663434fdc73fad74e23
container_end_page
container_issue 3
container_start_page 84
container_title Inventions (Basel)
container_volume 7
creator Al-Naji, Ali
Fakhri, Ahmed Bashar
Mahmood, Mustafa F
Chahl, Javaan
description Blood pressure (BP) is one of the most common vital signs related to cardiovascular diseases. BP is traditionally measured by mercury, aneroid, or digital sphygmomanometers; however, these approaches are restrictive, inconvenient, and need a pressure cuff to be attached directly to the patient. Therefore, it is clinically important to develop an innovative system that can accurately measure BP without the need for any direct physical contact with the people. This work aims to create a new computer vision system that remotely measures BP using a digital camera without a pressure cuff. The proposed BP system extracts the optical properties of photoplethysmographic signals in two regions in the forehead captured by a digital camera and calculates BP based on specific formulas. The experiments were performed on 25 human participants with different skin tones and repeated at different times under ambient light conditions. Compared to the systolic/diastolic BP readings obtained from a commercial digital sphygmomanometer, the proposed BP system achieves an accuracy of 94.6% with a root mean square error (RMSE) of 9.2 mmHg for systolic BP readings and an accuracy of 95.4% with an RMSE of 7.6 mmHg for diastolic BP readings. Thus, the proposed BP system has the potential of being a promising tool in the upcoming generation of BP monitoring systems.
doi_str_mv 10.3390/inventions7030084
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e43c396a4a994519835e2a17f38672a4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744670651</galeid><doaj_id>oai_doaj_org_article_e43c396a4a994519835e2a17f38672a4</doaj_id><sourcerecordid>A744670651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-1b9cb1e40cca5ecd62ecdfb3e105ecaa2c16587887ed2663434fdc73fad74e23</originalsourceid><addsrcrecordid>eNptkVFrGzEMx03pYCXrB9jbQZ_T2pbvfH5sQ9aWFjpYtlej-HTBIXdObWeQb1-3GctGi0GWZOnHXxZjXwW_BDD8yo-_acw-jElz4LxVJ-xMKiGmtQB1-o__mZ2ntOaci7aG2pgz9jALY0aXN5RSdbMJoau-x-LvIlXzlP2Ar9zqxz5lGqqfyY-rCqtZGLa7TLH65dPx-Qv71OMm0fmfe8IW3-aL2d308en2fnb9OHVKmTwVS-OWghR3DmtyXSOL6ZdAgpcQUTrR1K1uW02dbBpQoPrOaeix04okTNj9AdsFXNttLBrj3gb09i0R4spizN5tyJICB6ZBhcaoWpgWapIodA9toyWqwro4sLYxPO8oZbsOuzgW9VbqIkNJEHCsWmGB-rEPOaIbfHL2WivVaN6U352wyw-qyulo8C6M1PuS_69BHBpcDClF6v8OI7h9Xax9t1h4Af5Sl1E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716542313</pqid></control><display><type>article</type><title>Contactless Blood Pressure Estimation System Using a Computer Vision System</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Al-Naji, Ali ; Fakhri, Ahmed Bashar ; Mahmood, Mustafa F ; Chahl, Javaan</creator><creatorcontrib>Al-Naji, Ali ; Fakhri, Ahmed Bashar ; Mahmood, Mustafa F ; Chahl, Javaan</creatorcontrib><description>Blood pressure (BP) is one of the most common vital signs related to cardiovascular diseases. BP is traditionally measured by mercury, aneroid, or digital sphygmomanometers; however, these approaches are restrictive, inconvenient, and need a pressure cuff to be attached directly to the patient. Therefore, it is clinically important to develop an innovative system that can accurately measure BP without the need for any direct physical contact with the people. This work aims to create a new computer vision system that remotely measures BP using a digital camera without a pressure cuff. The proposed BP system extracts the optical properties of photoplethysmographic signals in two regions in the forehead captured by a digital camera and calculates BP based on specific formulas. The experiments were performed on 25 human participants with different skin tones and repeated at different times under ambient light conditions. Compared to the systolic/diastolic BP readings obtained from a commercial digital sphygmomanometer, the proposed BP system achieves an accuracy of 94.6% with a root mean square error (RMSE) of 9.2 mmHg for systolic BP readings and an accuracy of 95.4% with an RMSE of 7.6 mmHg for diastolic BP readings. Thus, the proposed BP system has the potential of being a promising tool in the upcoming generation of BP monitoring systems.</description><identifier>ISSN: 2411-5134</identifier><identifier>EISSN: 2411-5134</identifier><identifier>DOI: 10.3390/inventions7030084</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Blood pressure ; Cardiovascular diseases ; Computer vision ; contactless BP monitoring ; digital camera ; Digital cameras ; Electrocardiography ; Electronic cameras ; face detection ; Forehead ; Human performance ; Machine vision ; Medical instruments ; Neural networks ; Optical communication ; Optical properties ; Physiology ; Root-mean-square errors ; Sensors ; Time series ; video plethysmography ; Vision systems ; Wavelet transforms</subject><ispartof>Inventions (Basel), 2022-09, Vol.7 (3), p.84</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-1b9cb1e40cca5ecd62ecdfb3e105ecaa2c16587887ed2663434fdc73fad74e23</citedby><cites>FETCH-LOGICAL-c449t-1b9cb1e40cca5ecd62ecdfb3e105ecaa2c16587887ed2663434fdc73fad74e23</cites><orcidid>0000-0002-8840-9235 ; 0000-0001-6061-802X ; 0000-0001-6496-0543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716542313/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716542313?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74284,74998</link.rule.ids></links><search><creatorcontrib>Al-Naji, Ali</creatorcontrib><creatorcontrib>Fakhri, Ahmed Bashar</creatorcontrib><creatorcontrib>Mahmood, Mustafa F</creatorcontrib><creatorcontrib>Chahl, Javaan</creatorcontrib><title>Contactless Blood Pressure Estimation System Using a Computer Vision System</title><title>Inventions (Basel)</title><description>Blood pressure (BP) is one of the most common vital signs related to cardiovascular diseases. BP is traditionally measured by mercury, aneroid, or digital sphygmomanometers; however, these approaches are restrictive, inconvenient, and need a pressure cuff to be attached directly to the patient. Therefore, it is clinically important to develop an innovative system that can accurately measure BP without the need for any direct physical contact with the people. This work aims to create a new computer vision system that remotely measures BP using a digital camera without a pressure cuff. The proposed BP system extracts the optical properties of photoplethysmographic signals in two regions in the forehead captured by a digital camera and calculates BP based on specific formulas. The experiments were performed on 25 human participants with different skin tones and repeated at different times under ambient light conditions. Compared to the systolic/diastolic BP readings obtained from a commercial digital sphygmomanometer, the proposed BP system achieves an accuracy of 94.6% with a root mean square error (RMSE) of 9.2 mmHg for systolic BP readings and an accuracy of 95.4% with an RMSE of 7.6 mmHg for diastolic BP readings. Thus, the proposed BP system has the potential of being a promising tool in the upcoming generation of BP monitoring systems.</description><subject>Blood pressure</subject><subject>Cardiovascular diseases</subject><subject>Computer vision</subject><subject>contactless BP monitoring</subject><subject>digital camera</subject><subject>Digital cameras</subject><subject>Electrocardiography</subject><subject>Electronic cameras</subject><subject>face detection</subject><subject>Forehead</subject><subject>Human performance</subject><subject>Machine vision</subject><subject>Medical instruments</subject><subject>Neural networks</subject><subject>Optical communication</subject><subject>Optical properties</subject><subject>Physiology</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>Time series</subject><subject>video plethysmography</subject><subject>Vision systems</subject><subject>Wavelet transforms</subject><issn>2411-5134</issn><issn>2411-5134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkVFrGzEMx03pYCXrB9jbQZ_T2pbvfH5sQ9aWFjpYtlej-HTBIXdObWeQb1-3GctGi0GWZOnHXxZjXwW_BDD8yo-_acw-jElz4LxVJ-xMKiGmtQB1-o__mZ2ntOaci7aG2pgz9jALY0aXN5RSdbMJoau-x-LvIlXzlP2Ar9zqxz5lGqqfyY-rCqtZGLa7TLH65dPx-Qv71OMm0fmfe8IW3-aL2d308en2fnb9OHVKmTwVS-OWghR3DmtyXSOL6ZdAgpcQUTrR1K1uW02dbBpQoPrOaeix04okTNj9AdsFXNttLBrj3gb09i0R4spizN5tyJICB6ZBhcaoWpgWapIodA9toyWqwro4sLYxPO8oZbsOuzgW9VbqIkNJEHCsWmGB-rEPOaIbfHL2WivVaN6U352wyw-qyulo8C6M1PuS_69BHBpcDClF6v8OI7h9Xax9t1h4Af5Sl1E</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Al-Naji, Ali</creator><creator>Fakhri, Ahmed Bashar</creator><creator>Mahmood, Mustafa F</creator><creator>Chahl, Javaan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8840-9235</orcidid><orcidid>https://orcid.org/0000-0001-6061-802X</orcidid><orcidid>https://orcid.org/0000-0001-6496-0543</orcidid></search><sort><creationdate>20220901</creationdate><title>Contactless Blood Pressure Estimation System Using a Computer Vision System</title><author>Al-Naji, Ali ; Fakhri, Ahmed Bashar ; Mahmood, Mustafa F ; Chahl, Javaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-1b9cb1e40cca5ecd62ecdfb3e105ecaa2c16587887ed2663434fdc73fad74e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blood pressure</topic><topic>Cardiovascular diseases</topic><topic>Computer vision</topic><topic>contactless BP monitoring</topic><topic>digital camera</topic><topic>Digital cameras</topic><topic>Electrocardiography</topic><topic>Electronic cameras</topic><topic>face detection</topic><topic>Forehead</topic><topic>Human performance</topic><topic>Machine vision</topic><topic>Medical instruments</topic><topic>Neural networks</topic><topic>Optical communication</topic><topic>Optical properties</topic><topic>Physiology</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>Time series</topic><topic>video plethysmography</topic><topic>Vision systems</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Naji, Ali</creatorcontrib><creatorcontrib>Fakhri, Ahmed Bashar</creatorcontrib><creatorcontrib>Mahmood, Mustafa F</creatorcontrib><creatorcontrib>Chahl, Javaan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Inventions (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Naji, Ali</au><au>Fakhri, Ahmed Bashar</au><au>Mahmood, Mustafa F</au><au>Chahl, Javaan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contactless Blood Pressure Estimation System Using a Computer Vision System</atitle><jtitle>Inventions (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>7</volume><issue>3</issue><spage>84</spage><pages>84-</pages><issn>2411-5134</issn><eissn>2411-5134</eissn><abstract>Blood pressure (BP) is one of the most common vital signs related to cardiovascular diseases. BP is traditionally measured by mercury, aneroid, or digital sphygmomanometers; however, these approaches are restrictive, inconvenient, and need a pressure cuff to be attached directly to the patient. Therefore, it is clinically important to develop an innovative system that can accurately measure BP without the need for any direct physical contact with the people. This work aims to create a new computer vision system that remotely measures BP using a digital camera without a pressure cuff. The proposed BP system extracts the optical properties of photoplethysmographic signals in two regions in the forehead captured by a digital camera and calculates BP based on specific formulas. The experiments were performed on 25 human participants with different skin tones and repeated at different times under ambient light conditions. Compared to the systolic/diastolic BP readings obtained from a commercial digital sphygmomanometer, the proposed BP system achieves an accuracy of 94.6% with a root mean square error (RMSE) of 9.2 mmHg for systolic BP readings and an accuracy of 95.4% with an RMSE of 7.6 mmHg for diastolic BP readings. Thus, the proposed BP system has the potential of being a promising tool in the upcoming generation of BP monitoring systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/inventions7030084</doi><orcidid>https://orcid.org/0000-0002-8840-9235</orcidid><orcidid>https://orcid.org/0000-0001-6061-802X</orcidid><orcidid>https://orcid.org/0000-0001-6496-0543</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2411-5134
ispartof Inventions (Basel), 2022-09, Vol.7 (3), p.84
issn 2411-5134
2411-5134
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e43c396a4a994519835e2a17f38672a4
source Publicly Available Content Database; Coronavirus Research Database
subjects Blood pressure
Cardiovascular diseases
Computer vision
contactless BP monitoring
digital camera
Digital cameras
Electrocardiography
Electronic cameras
face detection
Forehead
Human performance
Machine vision
Medical instruments
Neural networks
Optical communication
Optical properties
Physiology
Root-mean-square errors
Sensors
Time series
video plethysmography
Vision systems
Wavelet transforms
title Contactless Blood Pressure Estimation System Using a Computer Vision System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contactless%20Blood%20Pressure%20Estimation%20System%20Using%20a%20Computer%20Vision%20System&rft.jtitle=Inventions%20(Basel)&rft.au=Al-Naji,%20Ali&rft.date=2022-09-01&rft.volume=7&rft.issue=3&rft.spage=84&rft.pages=84-&rft.issn=2411-5134&rft.eissn=2411-5134&rft_id=info:doi/10.3390/inventions7030084&rft_dat=%3Cgale_doaj_%3EA744670651%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-1b9cb1e40cca5ecd62ecdfb3e105ecaa2c16587887ed2663434fdc73fad74e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716542313&rft_id=info:pmid/&rft_galeid=A744670651&rfr_iscdi=true