Loading…

Peroxyacetic Acid Pretreatment: A Potentially Promising Strategy towards Lignocellulose Biorefinery

The stubborn and complex structure of lignocellulose hinders the valorization of each component of cellulose, hemicellulose, and lignin in the biorefinery industries. Therefore, efficient pretreatment is an essential and prerequisite step for lignocellulose biorefinery. Recently, a considerable numb...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2022-09, Vol.27 (19), p.6359
Main Authors: Hu, Mingyang, Chen, Junyou, Yu, Yanyan, Liu, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The stubborn and complex structure of lignocellulose hinders the valorization of each component of cellulose, hemicellulose, and lignin in the biorefinery industries. Therefore, efficient pretreatment is an essential and prerequisite step for lignocellulose biorefinery. Recently, a considerable number of studies have focused on peroxyacetic acid (PAA) pretreatment in lignocellulose fractionation and some breakthroughs have been achieved in recent decades. In this article, we aim to highlight the challenges of PAA pretreatment and propose a roadmap towards lignocellulose fractionation by PAA for future research. As a novel promising pretreatment method towards lignocellulosic fractionation, PAA is a strong oxidizing agent that can selectively remove lignin and hemicellulose from lignocellulose, retaining intact cellulose for downstream upgrading. PAA in lignocellulose pretreatment can be divided into commercial PAA, chemical activation PAA, and enzymatic in-situ generation of PAA. Each PAA for lignocellulose fractionation shows its own advantages and disadvantages. To meet the theme of green chemistry, enzymatic in-situ generation of PAA has aroused a great deal of enthusiasm in lignocellulose fractionation. Furthermore, mass balance and techno-economic analyses are discussed in order to evaluate the feasibility of PAA pretreatment in lignocellulose fractionation. Ultimately, some perspectives and opportunities are proposed to address the existing limitations in PAA pretreatment towards biomass biorefinery valorization. In summary, from the views of green chemistry, enzymatic in-situ generation of PAA will become a cutting-edge topic research in the lignocellulose fractionation in future.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27196359