Loading…

Combined subthalamic and nucleus basalis of Meynert deep brain stimulation for Parkinson's disease with dementia (DEMPARK-DBS): protocol of a randomized, sham-controlled trial

Dementia in Parkinson's disease (PDD) is a common non-motor symptom of advanced disease, associated with pronounced neocortical cholinergic deficits due to neurodegeneration of the nucleus basalis of Meynert (NBM) and its cholinergic terminals. In advanced PD, patients often require advanced th...

Full description

Saved in:
Bibliographic Details
Published in:Neurological research and practice 2020-10, Vol.2 (1), p.41-41, Article 41
Main Authors: Daniels, Christine, Steigerwald, Frank, Capetian, Philipp, Matthies, Cordula, Malzahn, Uwe, Heuschmann, Peter U, Volkmann, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dementia in Parkinson's disease (PDD) is a common non-motor symptom of advanced disease, associated with pronounced neocortical cholinergic deficits due to neurodegeneration of the nucleus basalis of Meynert (NBM) and its cholinergic terminals. In advanced PD, patients often require advanced therapies such as infusion therapy or deep brain stimulation (DBS) to improve motor control. However, patients with associated dementia are commonly excluded from DBS because of potential deterioration of cognitive functions. Yet marked reductions in dopaminergic medication and the subsequent risk of side effects (e.g., cognitive decline, psychosis, delirium) suggest that critical re-consideration of DBS of the subthalamic nucleus (STN-DBS) for advanced stages of PD and PDD is worthwhile. In this Phase 1b study, we will provide STN-DBS to a cohort of PDD patients with severe motor fluctuations and combine two additional electrodes for augmentative neurostimulation of the NBM. We aim to include 12 patients with mild-to-moderately severe PDD who fulfill indication criteria regarding motor symptoms for STN-DBS. Eligible patients will undergo implantation of a neurostimulation system with bilateral electrodes in both the STN and NBM. After 12 weeks of STN-DBS (visit 1/V1), participants will be randomized to receive either effective neurostimulation of the NBM (group 1) or sham stimulation of the NBM (group 2). NBM-DBS will be activated in all participants after 24 weeks of blinded treatment (visit 2/V2). The primary outcome will be the safety of combined bilateral STN- and NBM-DBS, determined by spontaneously-reported adverse events. Other outcome measures will comprise changes on scales evaluating cognition, activities of daily living functioning and clinical global impression, as well as motor functions, mood, behavior, caregiver burden and health economic aspects, and several domain-specific cognitive tests. Changes in scores (V1 - V2) for both treatment arms will undergo analysis of covariances, with baseline scores as covariates. The feasibility and safety of combined STN-NBM-DBS in patients with PDD will be assessed to determine whether additional NBM-DBS improves or slows the progression of cognitive decline. Positive results would provide a basic concept for future studies evaluating the efficacy of NBM-DBS in larger PDD cohorts. Indirectly, proof-of-safety of STN-DBS in PDD might influence patient selection for this standard treatment option in advanced PD. Clinic
ISSN:2524-3489
2524-3489
DOI:10.1186/s42466-020-00086-w