Loading…

Automatic Filtering and Classification of Low-Density Airborne Laser Scanner Clouds in Shrubland Environments

The monitoring of shrublands plays a fundamental role, from an ecological and climatic point of view, in biodiversity conservation, carbon stock estimates, and climate-change impact assessments. Laser scanning systems have proven to have a high capability in mapping non-herbaceous vegetation by clas...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-10, Vol.14 (20), p.5127
Main Authors: Simoniello, Tiziana, Coluzzi, Rosa, Guariglia, Annibale, Imbrenda, Vito, Lanfredi, Maria, Samela, Caterina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The monitoring of shrublands plays a fundamental role, from an ecological and climatic point of view, in biodiversity conservation, carbon stock estimates, and climate-change impact assessments. Laser scanning systems have proven to have a high capability in mapping non-herbaceous vegetation by classifying high-density point clouds. On the other hand, the classification of low-density airborne laser scanner (ALS) clouds is largely affected by confusion with rock spikes and boulders having similar heights and shapes. To identify rocks and improve the accuracy of vegetation classes, we implemented an effective and time-saving procedure based on the integration of geometric features with laser intensity segmented by K-means clustering (GIK procedure). The classification accuracy was evaluated, taking into account the data unevenness (small size of rock class vs. vegetation and terrain classes) by estimating the Balanced Accuracy (BA range 89.15–90.37); a comparison with a standard geometry-based procedure showed an increase in accuracy of about 27%. The classical overall accuracy is generally very high for all the classifications: the average is 92.7 for geometry-based and 94.9 for GIK. At class level, the precision (user’s accuracy) for vegetation classes is very high (on average, 92.6% for shrubs and 99% for bushes) with a relative increase for shrubs up to 20% (>10% when rocks occupy more than 8% of the scene). Less pronounced differences were found for bushes (maximum 4.13%). The precision of rock class is quite acceptable (about 64%), compared to the complete absence of detection of the geometric procedure. We also evaluated how point cloud density affects the proposed procedure and found that the increase in shrub precision is also preserved for ALS clouds with very low point density (
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14205127