Loading…

MRI radiomics and nutritional-inflammatory biomarkers: a powerful combination for predicting progression-free survival in cervical cancer patients undergoing concurrent chemoradiotherapy

This study aims to develop and validate a predictive model that integrates clinical features, MRI radiomics, and nutritional-inflammatory biomarkers to forecast progression-free survival (PFS) in cervical cancer (CC) patients undergoing concurrent chemoradiotherapy (CCRT). The goal is to identify hi...

Full description

Saved in:
Bibliographic Details
Published in:Cancer imaging 2024-10, Vol.24 (1), p.144-12, Article 144
Main Authors: Yan, Qi, Wu, Menghan, Zhang, Jing, Yang, Jiayang, Lv, Guannan, Qu, Baojun, Zhang, Yanping, Yan, Xia, Song, Jianbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c448t-cec9afc7826750444e2b1a1e6126d09de8b0e7cab8824e92b13cf0c863fbc5553
container_end_page 12
container_issue 1
container_start_page 144
container_title Cancer imaging
container_volume 24
creator Yan, Qi
Wu, Menghan
Zhang, Jing
Yang, Jiayang
Lv, Guannan
Qu, Baojun
Zhang, Yanping
Yan, Xia
Song, Jianbo
description This study aims to develop and validate a predictive model that integrates clinical features, MRI radiomics, and nutritional-inflammatory biomarkers to forecast progression-free survival (PFS) in cervical cancer (CC) patients undergoing concurrent chemoradiotherapy (CCRT). The goal is to identify high-risk patients and guide personalized treatment. We performed a retrospective analysis of 188 patients from two centers, divided into training (132) and validation (56) sets. Clinical data, systemic inflammatory markers, and immune-nutritional indices were collected. Radiomic features from three MRI sequences were extracted and selected for predictive value. We developed and evaluated five models incorporating clinical features, nutritional-inflammatory indicators, and radiomics using C-index. The best-performing model was used to create a nomogram, which was validated through ROC curves, calibration plots, and decision curve analysis (DCA). Model 5, which integrates clinical features, Systemic Immune-Inflammation Index (SII), Prognostic Nutritional Index (PNI), and MRI radiomics, showed the highest performance. It achieved a C-index of 0.833 (95% CI: 0.792-0.874) in the training set and 0.789 (95% CI: 0.679-0.899) in the validation set. The nomogram derived from Model 5 effectively stratified patients into risk groups, with AUCs of 0.833, 0.941, and 0.973 for 1-year, 3-year, and 5-year PFS in the training set, and 0.812, 0.940, and 0.944 in the validation set. The integrated model combining clinical features, nutritional-inflammatory biomarkers, and radiomics offers a robust tool for predicting PFS in CC patients undergoing CCRT. The nomogram provides precise predictions, supporting its application in personalized patient management.
doi_str_mv 10.1186/s40644-024-00789-2
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e46fc784b27e4d9a8257d038544d512b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813570667</galeid><doaj_id>oai_doaj_org_article_e46fc784b27e4d9a8257d038544d512b</doaj_id><sourcerecordid>A813570667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-cec9afc7826750444e2b1a1e6126d09de8b0e7cab8824e92b13cf0c863fbc5553</originalsourceid><addsrcrecordid>eNptkt-K1DAUxoso7rr6Al5IQBBvuiZp0qTeLMvin4EVQfQ6pMlpJ2ubjEk7Mq_m05nOrMsMSAk9nPOdX06SryheEnxJiKzfJYZrxkpM88JCNiV9VJwTJnApqgo_PorPimcp3WFMG9mIp8VZ1TDWECzOiz9fvq1Q1NaF0ZmEtLfIz1N0kwteD6Xz3aDHUU8h7lCbRTr-hJjeI4024TfEbh6QCWPrvF46UBci2kSwzkzO9zkMfYSUcqnsIgBKc9y6rR6Q88hAjk2OjfY5RpuMAD8lNHsLsQ8LwARv5hhzGpk1jGE_6bSGqDe758WTTg8JXtz_L4ofHz98v_lc3n79tLq5vi0NY3IqDZhGd0ZIWguOGWNAW6IJ1ITWFjcWZItBGN1KSRk0uViZDhtZV11rOOfVRbE6cG3Qd2oTXb6EnQraqX0ixF7pODkzgAJWLzuxlgpgttGScmFxJTljlhPaZtbVgbWZ2xGsyQeLejiBnla8W6s-bBUhnHAuRSa8vSfE8GuGNKnRJQPDoD2EOamKUMwbUWGapa8P0l7n2fJThow0i1xdS1Jxget6AV7-R5U_C9kSwUPncv6k4c1Rwxr0MK1TGObFAOlUSA9CE0NKEbqHcxKsFgerg4NVdrDaO1gtQ786vqGHln-Wrf4CXNTxWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120597302</pqid></control><display><type>article</type><title>MRI radiomics and nutritional-inflammatory biomarkers: a powerful combination for predicting progression-free survival in cervical cancer patients undergoing concurrent chemoradiotherapy</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Yan, Qi ; Wu, Menghan ; Zhang, Jing ; Yang, Jiayang ; Lv, Guannan ; Qu, Baojun ; Zhang, Yanping ; Yan, Xia ; Song, Jianbo</creator><creatorcontrib>Yan, Qi ; Wu, Menghan ; Zhang, Jing ; Yang, Jiayang ; Lv, Guannan ; Qu, Baojun ; Zhang, Yanping ; Yan, Xia ; Song, Jianbo</creatorcontrib><description>This study aims to develop and validate a predictive model that integrates clinical features, MRI radiomics, and nutritional-inflammatory biomarkers to forecast progression-free survival (PFS) in cervical cancer (CC) patients undergoing concurrent chemoradiotherapy (CCRT). The goal is to identify high-risk patients and guide personalized treatment. We performed a retrospective analysis of 188 patients from two centers, divided into training (132) and validation (56) sets. Clinical data, systemic inflammatory markers, and immune-nutritional indices were collected. Radiomic features from three MRI sequences were extracted and selected for predictive value. We developed and evaluated five models incorporating clinical features, nutritional-inflammatory indicators, and radiomics using C-index. The best-performing model was used to create a nomogram, which was validated through ROC curves, calibration plots, and decision curve analysis (DCA). Model 5, which integrates clinical features, Systemic Immune-Inflammation Index (SII), Prognostic Nutritional Index (PNI), and MRI radiomics, showed the highest performance. It achieved a C-index of 0.833 (95% CI: 0.792-0.874) in the training set and 0.789 (95% CI: 0.679-0.899) in the validation set. The nomogram derived from Model 5 effectively stratified patients into risk groups, with AUCs of 0.833, 0.941, and 0.973 for 1-year, 3-year, and 5-year PFS in the training set, and 0.812, 0.940, and 0.944 in the validation set. The integrated model combining clinical features, nutritional-inflammatory biomarkers, and radiomics offers a robust tool for predicting PFS in CC patients undergoing CCRT. The nomogram provides precise predictions, supporting its application in personalized patient management.</description><identifier>ISSN: 1470-7330</identifier><identifier>ISSN: 1740-5025</identifier><identifier>EISSN: 1470-7330</identifier><identifier>DOI: 10.1186/s40644-024-00789-2</identifier><identifier>PMID: 39449107</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adult ; Aged ; Biological markers ; Biomarkers, Tumor - analysis ; Cancer ; Cancer patients ; Care and treatment ; Cervical cancer ; Chemoradiotherapy - methods ; Concurrent chemoradiotherapy ; Development and progression ; Female ; Humans ; Inflammation ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical research ; Medicine, Experimental ; Middle Aged ; MRI radiomics ; Nomograms ; Nutritional-inflammatory biomarkers ; Patient outcomes ; Prognosis ; Progression-Free Survival ; Radiomics ; Retrospective Studies ; Uterine Cervical Neoplasms - diagnostic imaging ; Uterine Cervical Neoplasms - mortality ; Uterine Cervical Neoplasms - pathology ; Uterine Cervical Neoplasms - therapy</subject><ispartof>Cancer imaging, 2024-10, Vol.24 (1), p.144-12, Article 144</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c448t-cec9afc7826750444e2b1a1e6126d09de8b0e7cab8824e92b13cf0c863fbc5553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515587/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515587/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39449107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Qi</creatorcontrib><creatorcontrib>Wu, Menghan</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Yang, Jiayang</creatorcontrib><creatorcontrib>Lv, Guannan</creatorcontrib><creatorcontrib>Qu, Baojun</creatorcontrib><creatorcontrib>Zhang, Yanping</creatorcontrib><creatorcontrib>Yan, Xia</creatorcontrib><creatorcontrib>Song, Jianbo</creatorcontrib><title>MRI radiomics and nutritional-inflammatory biomarkers: a powerful combination for predicting progression-free survival in cervical cancer patients undergoing concurrent chemoradiotherapy</title><title>Cancer imaging</title><addtitle>Cancer Imaging</addtitle><description>This study aims to develop and validate a predictive model that integrates clinical features, MRI radiomics, and nutritional-inflammatory biomarkers to forecast progression-free survival (PFS) in cervical cancer (CC) patients undergoing concurrent chemoradiotherapy (CCRT). The goal is to identify high-risk patients and guide personalized treatment. We performed a retrospective analysis of 188 patients from two centers, divided into training (132) and validation (56) sets. Clinical data, systemic inflammatory markers, and immune-nutritional indices were collected. Radiomic features from three MRI sequences were extracted and selected for predictive value. We developed and evaluated five models incorporating clinical features, nutritional-inflammatory indicators, and radiomics using C-index. The best-performing model was used to create a nomogram, which was validated through ROC curves, calibration plots, and decision curve analysis (DCA). Model 5, which integrates clinical features, Systemic Immune-Inflammation Index (SII), Prognostic Nutritional Index (PNI), and MRI radiomics, showed the highest performance. It achieved a C-index of 0.833 (95% CI: 0.792-0.874) in the training set and 0.789 (95% CI: 0.679-0.899) in the validation set. The nomogram derived from Model 5 effectively stratified patients into risk groups, with AUCs of 0.833, 0.941, and 0.973 for 1-year, 3-year, and 5-year PFS in the training set, and 0.812, 0.940, and 0.944 in the validation set. The integrated model combining clinical features, nutritional-inflammatory biomarkers, and radiomics offers a robust tool for predicting PFS in CC patients undergoing CCRT. The nomogram provides precise predictions, supporting its application in personalized patient management.</description><subject>Adult</subject><subject>Aged</subject><subject>Biological markers</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Cancer</subject><subject>Cancer patients</subject><subject>Care and treatment</subject><subject>Cervical cancer</subject><subject>Chemoradiotherapy - methods</subject><subject>Concurrent chemoradiotherapy</subject><subject>Development and progression</subject><subject>Female</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Middle Aged</subject><subject>MRI radiomics</subject><subject>Nomograms</subject><subject>Nutritional-inflammatory biomarkers</subject><subject>Patient outcomes</subject><subject>Prognosis</subject><subject>Progression-Free Survival</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>Uterine Cervical Neoplasms - diagnostic imaging</subject><subject>Uterine Cervical Neoplasms - mortality</subject><subject>Uterine Cervical Neoplasms - pathology</subject><subject>Uterine Cervical Neoplasms - therapy</subject><issn>1470-7330</issn><issn>1740-5025</issn><issn>1470-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkt-K1DAUxoso7rr6Al5IQBBvuiZp0qTeLMvin4EVQfQ6pMlpJ2ubjEk7Mq_m05nOrMsMSAk9nPOdX06SryheEnxJiKzfJYZrxkpM88JCNiV9VJwTJnApqgo_PorPimcp3WFMG9mIp8VZ1TDWECzOiz9fvq1Q1NaF0ZmEtLfIz1N0kwteD6Xz3aDHUU8h7lCbRTr-hJjeI4024TfEbh6QCWPrvF46UBci2kSwzkzO9zkMfYSUcqnsIgBKc9y6rR6Q88hAjk2OjfY5RpuMAD8lNHsLsQ8LwARv5hhzGpk1jGE_6bSGqDe758WTTg8JXtz_L4ofHz98v_lc3n79tLq5vi0NY3IqDZhGd0ZIWguOGWNAW6IJ1ITWFjcWZItBGN1KSRk0uViZDhtZV11rOOfVRbE6cG3Qd2oTXb6EnQraqX0ixF7pODkzgAJWLzuxlgpgttGScmFxJTljlhPaZtbVgbWZ2xGsyQeLejiBnla8W6s-bBUhnHAuRSa8vSfE8GuGNKnRJQPDoD2EOamKUMwbUWGapa8P0l7n2fJThow0i1xdS1Jxget6AV7-R5U_C9kSwUPncv6k4c1Rwxr0MK1TGObFAOlUSA9CE0NKEbqHcxKsFgerg4NVdrDaO1gtQ786vqGHln-Wrf4CXNTxWg</recordid><startdate>20241024</startdate><enddate>20241024</enddate><creator>Yan, Qi</creator><creator>Wu, Menghan</creator><creator>Zhang, Jing</creator><creator>Yang, Jiayang</creator><creator>Lv, Guannan</creator><creator>Qu, Baojun</creator><creator>Zhang, Yanping</creator><creator>Yan, Xia</creator><creator>Song, Jianbo</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241024</creationdate><title>MRI radiomics and nutritional-inflammatory biomarkers: a powerful combination for predicting progression-free survival in cervical cancer patients undergoing concurrent chemoradiotherapy</title><author>Yan, Qi ; Wu, Menghan ; Zhang, Jing ; Yang, Jiayang ; Lv, Guannan ; Qu, Baojun ; Zhang, Yanping ; Yan, Xia ; Song, Jianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-cec9afc7826750444e2b1a1e6126d09de8b0e7cab8824e92b13cf0c863fbc5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biological markers</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Cancer</topic><topic>Cancer patients</topic><topic>Care and treatment</topic><topic>Cervical cancer</topic><topic>Chemoradiotherapy - methods</topic><topic>Concurrent chemoradiotherapy</topic><topic>Development and progression</topic><topic>Female</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Middle Aged</topic><topic>MRI radiomics</topic><topic>Nomograms</topic><topic>Nutritional-inflammatory biomarkers</topic><topic>Patient outcomes</topic><topic>Prognosis</topic><topic>Progression-Free Survival</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>Uterine Cervical Neoplasms - diagnostic imaging</topic><topic>Uterine Cervical Neoplasms - mortality</topic><topic>Uterine Cervical Neoplasms - pathology</topic><topic>Uterine Cervical Neoplasms - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Qi</creatorcontrib><creatorcontrib>Wu, Menghan</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Yang, Jiayang</creatorcontrib><creatorcontrib>Lv, Guannan</creatorcontrib><creatorcontrib>Qu, Baojun</creatorcontrib><creatorcontrib>Zhang, Yanping</creatorcontrib><creatorcontrib>Yan, Xia</creatorcontrib><creatorcontrib>Song, Jianbo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cancer imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Qi</au><au>Wu, Menghan</au><au>Zhang, Jing</au><au>Yang, Jiayang</au><au>Lv, Guannan</au><au>Qu, Baojun</au><au>Zhang, Yanping</au><au>Yan, Xia</au><au>Song, Jianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI radiomics and nutritional-inflammatory biomarkers: a powerful combination for predicting progression-free survival in cervical cancer patients undergoing concurrent chemoradiotherapy</atitle><jtitle>Cancer imaging</jtitle><addtitle>Cancer Imaging</addtitle><date>2024-10-24</date><risdate>2024</risdate><volume>24</volume><issue>1</issue><spage>144</spage><epage>12</epage><pages>144-12</pages><artnum>144</artnum><issn>1470-7330</issn><issn>1740-5025</issn><eissn>1470-7330</eissn><abstract>This study aims to develop and validate a predictive model that integrates clinical features, MRI radiomics, and nutritional-inflammatory biomarkers to forecast progression-free survival (PFS) in cervical cancer (CC) patients undergoing concurrent chemoradiotherapy (CCRT). The goal is to identify high-risk patients and guide personalized treatment. We performed a retrospective analysis of 188 patients from two centers, divided into training (132) and validation (56) sets. Clinical data, systemic inflammatory markers, and immune-nutritional indices were collected. Radiomic features from three MRI sequences were extracted and selected for predictive value. We developed and evaluated five models incorporating clinical features, nutritional-inflammatory indicators, and radiomics using C-index. The best-performing model was used to create a nomogram, which was validated through ROC curves, calibration plots, and decision curve analysis (DCA). Model 5, which integrates clinical features, Systemic Immune-Inflammation Index (SII), Prognostic Nutritional Index (PNI), and MRI radiomics, showed the highest performance. It achieved a C-index of 0.833 (95% CI: 0.792-0.874) in the training set and 0.789 (95% CI: 0.679-0.899) in the validation set. The nomogram derived from Model 5 effectively stratified patients into risk groups, with AUCs of 0.833, 0.941, and 0.973 for 1-year, 3-year, and 5-year PFS in the training set, and 0.812, 0.940, and 0.944 in the validation set. The integrated model combining clinical features, nutritional-inflammatory biomarkers, and radiomics offers a robust tool for predicting PFS in CC patients undergoing CCRT. The nomogram provides precise predictions, supporting its application in personalized patient management.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39449107</pmid><doi>10.1186/s40644-024-00789-2</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1470-7330
ispartof Cancer imaging, 2024-10, Vol.24 (1), p.144-12, Article 144
issn 1470-7330
1740-5025
1470-7330
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e46fc784b27e4d9a8257d038544d512b
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Adult
Aged
Biological markers
Biomarkers, Tumor - analysis
Cancer
Cancer patients
Care and treatment
Cervical cancer
Chemoradiotherapy - methods
Concurrent chemoradiotherapy
Development and progression
Female
Humans
Inflammation
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical research
Medicine, Experimental
Middle Aged
MRI radiomics
Nomograms
Nutritional-inflammatory biomarkers
Patient outcomes
Prognosis
Progression-Free Survival
Radiomics
Retrospective Studies
Uterine Cervical Neoplasms - diagnostic imaging
Uterine Cervical Neoplasms - mortality
Uterine Cervical Neoplasms - pathology
Uterine Cervical Neoplasms - therapy
title MRI radiomics and nutritional-inflammatory biomarkers: a powerful combination for predicting progression-free survival in cervical cancer patients undergoing concurrent chemoradiotherapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI%20radiomics%20and%20nutritional-inflammatory%20biomarkers:%20a%20powerful%20combination%20for%20predicting%20progression-free%20survival%20in%20cervical%20cancer%20patients%20undergoing%20concurrent%20chemoradiotherapy&rft.jtitle=Cancer%20imaging&rft.au=Yan,%20Qi&rft.date=2024-10-24&rft.volume=24&rft.issue=1&rft.spage=144&rft.epage=12&rft.pages=144-12&rft.artnum=144&rft.issn=1470-7330&rft.eissn=1470-7330&rft_id=info:doi/10.1186/s40644-024-00789-2&rft_dat=%3Cgale_doaj_%3EA813570667%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-cec9afc7826750444e2b1a1e6126d09de8b0e7cab8824e92b13cf0c863fbc5553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120597302&rft_id=info:pmid/39449107&rft_galeid=A813570667&rfr_iscdi=true