Loading…
A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors
Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that e...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-01, Vol.19 (1), p.206 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3 |
container_end_page | |
container_issue | 1 |
container_start_page | 206 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 19 |
creator | Naveed, Khuram Ehsan, Shoaib McDonald-Maier, Klaus D Ur Rehman, Naveed |
description | Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that end, we propose a generalized framework based on detection theory and hypothesis testing coupled with the variance stability transformation (VST) for Poisson or Poisson⁻Gaussian denoising. VST transforms signal-dependent Poisson noise to a signal independent Gaussian noise with stable variance. Subsequently, multiscale transforms are employed on the noisy image to segregate signal and noise into separate coefficients. That facilitates the application of local binary hypothesis testing on multiple scales using empirical distribution function (EDF) for the purpose of detection and removal of noise. We demonstrate the effectiveness of the proposed framework with different multiscale transforms and on a wide variety of input datasets. |
doi_str_mv | 10.3390/s19010206 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e48fecc9af1a4c45933a0592bf1b9f4c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e48fecc9af1a4c45933a0592bf1b9f4c</doaj_id><sourcerecordid>2179310283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3</originalsourceid><addsrcrecordid>eNpdks9P2zAUxyO0aTDYgX9gsrQLHDrsZyeNL5OqFLZKIA7A2XKc59ZdEnd2MsR_P9OyCjjZfu_rj77vR5adMvqdc0kvIpOUUaDFQXbEBIhJCUA_vLofZp9jXFMKnPPyU3bIaQFF-nGUrWbkZmwHF41ukcyx9y66fkmugu7w0Yff5GH7nuOAZnC-J_cr9OGJPLphRWabTeuM3sYHTxadXmIkNviOVDe3dxdVNSd32Ecf4kn20eo24peX8zh7uLq8r35Nrm9_LqrZ9cSIQg6TAi1QEFLYBnOjGyhrC1JTI1nNoZmmcnNWlqkSbGqdg2kEgi6amluoZWn4cbbYcRuv12oTXKfDk_LaqW3Ah6XSYXCmRYWitGiM1JZpYUQuOdc0l1BbVksrnlk_dqzNWHfYGOyHoNs30LeZ3q3U0v9VRWpzMpoAZy-A4P-MGAfVpU5j2-oe_RgVsKnkaQ4lT9Jv76RrP4Y-tUoBcGA5m4oyqc53KhN8jAHt3gyj6nkX1H4Xkvbra_d75f_h83_0iK7W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232151748</pqid></control><display><type>article</type><title>A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Naveed, Khuram ; Ehsan, Shoaib ; McDonald-Maier, Klaus D ; Ur Rehman, Naveed</creator><creatorcontrib>Naveed, Khuram ; Ehsan, Shoaib ; McDonald-Maier, Klaus D ; Ur Rehman, Naveed</creatorcontrib><description>Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that end, we propose a generalized framework based on detection theory and hypothesis testing coupled with the variance stability transformation (VST) for Poisson or Poisson⁻Gaussian denoising. VST transforms signal-dependent Poisson noise to a signal independent Gaussian noise with stable variance. Subsequently, multiscale transforms are employed on the noisy image to segregate signal and noise into separate coefficients. That facilitates the application of local binary hypothesis testing on multiple scales using empirical distribution function (EDF) for the purpose of detection and removal of noise. We demonstrate the effectiveness of the proposed framework with different multiscale transforms and on a wide variety of input datasets.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19010206</identifier><identifier>PMID: 30626102</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Architectural engineering ; binary hypothesis testing ; CMOS ; CMOS/CCD image sensors ; Computer engineering ; detection theory ; Distribution functions ; Gaussian and Poisson denoising ; Hypotheses ; Hypothesis testing ; Image acquisition ; Image detection ; International conferences ; multiscale ; Noise ; Noise reduction ; Normal distribution ; Principal components analysis ; Random noise ; Sensors ; Signal processing ; Theory ; variance stability transformation (VST) ; Variations ; Wavelet transforms</subject><ispartof>Sensors (Basel, Switzerland), 2019-01, Vol.19 (1), p.206</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3</citedby><cites>FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3</cites><orcidid>0000-0001-8286-6139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2232151748/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2232151748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30626102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naveed, Khuram</creatorcontrib><creatorcontrib>Ehsan, Shoaib</creatorcontrib><creatorcontrib>McDonald-Maier, Klaus D</creatorcontrib><creatorcontrib>Ur Rehman, Naveed</creatorcontrib><title>A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that end, we propose a generalized framework based on detection theory and hypothesis testing coupled with the variance stability transformation (VST) for Poisson or Poisson⁻Gaussian denoising. VST transforms signal-dependent Poisson noise to a signal independent Gaussian noise with stable variance. Subsequently, multiscale transforms are employed on the noisy image to segregate signal and noise into separate coefficients. That facilitates the application of local binary hypothesis testing on multiple scales using empirical distribution function (EDF) for the purpose of detection and removal of noise. We demonstrate the effectiveness of the proposed framework with different multiscale transforms and on a wide variety of input datasets.</description><subject>Architectural engineering</subject><subject>binary hypothesis testing</subject><subject>CMOS</subject><subject>CMOS/CCD image sensors</subject><subject>Computer engineering</subject><subject>detection theory</subject><subject>Distribution functions</subject><subject>Gaussian and Poisson denoising</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Image acquisition</subject><subject>Image detection</subject><subject>International conferences</subject><subject>multiscale</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Normal distribution</subject><subject>Principal components analysis</subject><subject>Random noise</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Theory</subject><subject>variance stability transformation (VST)</subject><subject>Variations</subject><subject>Wavelet transforms</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9P2zAUxyO0aTDYgX9gsrQLHDrsZyeNL5OqFLZKIA7A2XKc59ZdEnd2MsR_P9OyCjjZfu_rj77vR5adMvqdc0kvIpOUUaDFQXbEBIhJCUA_vLofZp9jXFMKnPPyU3bIaQFF-nGUrWbkZmwHF41ukcyx9y66fkmugu7w0Yff5GH7nuOAZnC-J_cr9OGJPLphRWabTeuM3sYHTxadXmIkNviOVDe3dxdVNSd32Ecf4kn20eo24peX8zh7uLq8r35Nrm9_LqrZ9cSIQg6TAi1QEFLYBnOjGyhrC1JTI1nNoZmmcnNWlqkSbGqdg2kEgi6amluoZWn4cbbYcRuv12oTXKfDk_LaqW3Ah6XSYXCmRYWitGiM1JZpYUQuOdc0l1BbVksrnlk_dqzNWHfYGOyHoNs30LeZ3q3U0v9VRWpzMpoAZy-A4P-MGAfVpU5j2-oe_RgVsKnkaQ4lT9Jv76RrP4Y-tUoBcGA5m4oyqc53KhN8jAHt3gyj6nkX1H4Xkvbra_d75f_h83_0iK7W</recordid><startdate>20190108</startdate><enddate>20190108</enddate><creator>Naveed, Khuram</creator><creator>Ehsan, Shoaib</creator><creator>McDonald-Maier, Klaus D</creator><creator>Ur Rehman, Naveed</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8286-6139</orcidid></search><sort><creationdate>20190108</creationdate><title>A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors</title><author>Naveed, Khuram ; Ehsan, Shoaib ; McDonald-Maier, Klaus D ; Ur Rehman, Naveed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architectural engineering</topic><topic>binary hypothesis testing</topic><topic>CMOS</topic><topic>CMOS/CCD image sensors</topic><topic>Computer engineering</topic><topic>detection theory</topic><topic>Distribution functions</topic><topic>Gaussian and Poisson denoising</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Image acquisition</topic><topic>Image detection</topic><topic>International conferences</topic><topic>multiscale</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Normal distribution</topic><topic>Principal components analysis</topic><topic>Random noise</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Theory</topic><topic>variance stability transformation (VST)</topic><topic>Variations</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naveed, Khuram</creatorcontrib><creatorcontrib>Ehsan, Shoaib</creatorcontrib><creatorcontrib>McDonald-Maier, Klaus D</creatorcontrib><creatorcontrib>Ur Rehman, Naveed</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naveed, Khuram</au><au>Ehsan, Shoaib</au><au>McDonald-Maier, Klaus D</au><au>Ur Rehman, Naveed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-01-08</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>206</spage><pages>206-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that end, we propose a generalized framework based on detection theory and hypothesis testing coupled with the variance stability transformation (VST) for Poisson or Poisson⁻Gaussian denoising. VST transforms signal-dependent Poisson noise to a signal independent Gaussian noise with stable variance. Subsequently, multiscale transforms are employed on the noisy image to segregate signal and noise into separate coefficients. That facilitates the application of local binary hypothesis testing on multiple scales using empirical distribution function (EDF) for the purpose of detection and removal of noise. We demonstrate the effectiveness of the proposed framework with different multiscale transforms and on a wide variety of input datasets.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30626102</pmid><doi>10.3390/s19010206</doi><orcidid>https://orcid.org/0000-0001-8286-6139</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2019-01, Vol.19 (1), p.206 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e48fecc9af1a4c45933a0592bf1b9f4c |
source | Publicly Available Content Database; PubMed Central |
subjects | Architectural engineering binary hypothesis testing CMOS CMOS/CCD image sensors Computer engineering detection theory Distribution functions Gaussian and Poisson denoising Hypotheses Hypothesis testing Image acquisition Image detection International conferences multiscale Noise Noise reduction Normal distribution Principal components analysis Random noise Sensors Signal processing Theory variance stability transformation (VST) Variations Wavelet transforms |
title | A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiscale%20Denoising%20Framework%20Using%20Detection%20Theory%20with%20Application%20to%20Images%20from%20CMOS/CCD%20Sensors&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Naveed,%20Khuram&rft.date=2019-01-08&rft.volume=19&rft.issue=1&rft.spage=206&rft.pages=206-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19010206&rft_dat=%3Cproquest_doaj_%3E2179310283%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232151748&rft_id=info:pmid/30626102&rfr_iscdi=true |