Loading…

A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors

Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that e...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-01, Vol.19 (1), p.206
Main Authors: Naveed, Khuram, Ehsan, Shoaib, McDonald-Maier, Klaus D, Ur Rehman, Naveed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3
cites cdi_FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3
container_end_page
container_issue 1
container_start_page 206
container_title Sensors (Basel, Switzerland)
container_volume 19
creator Naveed, Khuram
Ehsan, Shoaib
McDonald-Maier, Klaus D
Ur Rehman, Naveed
description Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that end, we propose a generalized framework based on detection theory and hypothesis testing coupled with the variance stability transformation (VST) for Poisson or Poisson⁻Gaussian denoising. VST transforms signal-dependent Poisson noise to a signal independent Gaussian noise with stable variance. Subsequently, multiscale transforms are employed on the noisy image to segregate signal and noise into separate coefficients. That facilitates the application of local binary hypothesis testing on multiple scales using empirical distribution function (EDF) for the purpose of detection and removal of noise. We demonstrate the effectiveness of the proposed framework with different multiscale transforms and on a wide variety of input datasets.
doi_str_mv 10.3390/s19010206
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e48fecc9af1a4c45933a0592bf1b9f4c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e48fecc9af1a4c45933a0592bf1b9f4c</doaj_id><sourcerecordid>2179310283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3</originalsourceid><addsrcrecordid>eNpdks9P2zAUxyO0aTDYgX9gsrQLHDrsZyeNL5OqFLZKIA7A2XKc59ZdEnd2MsR_P9OyCjjZfu_rj77vR5adMvqdc0kvIpOUUaDFQXbEBIhJCUA_vLofZp9jXFMKnPPyU3bIaQFF-nGUrWbkZmwHF41ukcyx9y66fkmugu7w0Yff5GH7nuOAZnC-J_cr9OGJPLphRWabTeuM3sYHTxadXmIkNviOVDe3dxdVNSd32Ecf4kn20eo24peX8zh7uLq8r35Nrm9_LqrZ9cSIQg6TAi1QEFLYBnOjGyhrC1JTI1nNoZmmcnNWlqkSbGqdg2kEgi6amluoZWn4cbbYcRuv12oTXKfDk_LaqW3Ah6XSYXCmRYWitGiM1JZpYUQuOdc0l1BbVksrnlk_dqzNWHfYGOyHoNs30LeZ3q3U0v9VRWpzMpoAZy-A4P-MGAfVpU5j2-oe_RgVsKnkaQ4lT9Jv76RrP4Y-tUoBcGA5m4oyqc53KhN8jAHt3gyj6nkX1H4Xkvbra_d75f_h83_0iK7W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232151748</pqid></control><display><type>article</type><title>A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Naveed, Khuram ; Ehsan, Shoaib ; McDonald-Maier, Klaus D ; Ur Rehman, Naveed</creator><creatorcontrib>Naveed, Khuram ; Ehsan, Shoaib ; McDonald-Maier, Klaus D ; Ur Rehman, Naveed</creatorcontrib><description>Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that end, we propose a generalized framework based on detection theory and hypothesis testing coupled with the variance stability transformation (VST) for Poisson or Poisson⁻Gaussian denoising. VST transforms signal-dependent Poisson noise to a signal independent Gaussian noise with stable variance. Subsequently, multiscale transforms are employed on the noisy image to segregate signal and noise into separate coefficients. That facilitates the application of local binary hypothesis testing on multiple scales using empirical distribution function (EDF) for the purpose of detection and removal of noise. We demonstrate the effectiveness of the proposed framework with different multiscale transforms and on a wide variety of input datasets.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19010206</identifier><identifier>PMID: 30626102</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Architectural engineering ; binary hypothesis testing ; CMOS ; CMOS/CCD image sensors ; Computer engineering ; detection theory ; Distribution functions ; Gaussian and Poisson denoising ; Hypotheses ; Hypothesis testing ; Image acquisition ; Image detection ; International conferences ; multiscale ; Noise ; Noise reduction ; Normal distribution ; Principal components analysis ; Random noise ; Sensors ; Signal processing ; Theory ; variance stability transformation (VST) ; Variations ; Wavelet transforms</subject><ispartof>Sensors (Basel, Switzerland), 2019-01, Vol.19 (1), p.206</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3</citedby><cites>FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3</cites><orcidid>0000-0001-8286-6139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2232151748/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2232151748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30626102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naveed, Khuram</creatorcontrib><creatorcontrib>Ehsan, Shoaib</creatorcontrib><creatorcontrib>McDonald-Maier, Klaus D</creatorcontrib><creatorcontrib>Ur Rehman, Naveed</creatorcontrib><title>A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that end, we propose a generalized framework based on detection theory and hypothesis testing coupled with the variance stability transformation (VST) for Poisson or Poisson⁻Gaussian denoising. VST transforms signal-dependent Poisson noise to a signal independent Gaussian noise with stable variance. Subsequently, multiscale transforms are employed on the noisy image to segregate signal and noise into separate coefficients. That facilitates the application of local binary hypothesis testing on multiple scales using empirical distribution function (EDF) for the purpose of detection and removal of noise. We demonstrate the effectiveness of the proposed framework with different multiscale transforms and on a wide variety of input datasets.</description><subject>Architectural engineering</subject><subject>binary hypothesis testing</subject><subject>CMOS</subject><subject>CMOS/CCD image sensors</subject><subject>Computer engineering</subject><subject>detection theory</subject><subject>Distribution functions</subject><subject>Gaussian and Poisson denoising</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Image acquisition</subject><subject>Image detection</subject><subject>International conferences</subject><subject>multiscale</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Normal distribution</subject><subject>Principal components analysis</subject><subject>Random noise</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Theory</subject><subject>variance stability transformation (VST)</subject><subject>Variations</subject><subject>Wavelet transforms</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9P2zAUxyO0aTDYgX9gsrQLHDrsZyeNL5OqFLZKIA7A2XKc59ZdEnd2MsR_P9OyCjjZfu_rj77vR5adMvqdc0kvIpOUUaDFQXbEBIhJCUA_vLofZp9jXFMKnPPyU3bIaQFF-nGUrWbkZmwHF41ukcyx9y66fkmugu7w0Yff5GH7nuOAZnC-J_cr9OGJPLphRWabTeuM3sYHTxadXmIkNviOVDe3dxdVNSd32Ecf4kn20eo24peX8zh7uLq8r35Nrm9_LqrZ9cSIQg6TAi1QEFLYBnOjGyhrC1JTI1nNoZmmcnNWlqkSbGqdg2kEgi6amluoZWn4cbbYcRuv12oTXKfDk_LaqW3Ah6XSYXCmRYWitGiM1JZpYUQuOdc0l1BbVksrnlk_dqzNWHfYGOyHoNs30LeZ3q3U0v9VRWpzMpoAZy-A4P-MGAfVpU5j2-oe_RgVsKnkaQ4lT9Jv76RrP4Y-tUoBcGA5m4oyqc53KhN8jAHt3gyj6nkX1H4Xkvbra_d75f_h83_0iK7W</recordid><startdate>20190108</startdate><enddate>20190108</enddate><creator>Naveed, Khuram</creator><creator>Ehsan, Shoaib</creator><creator>McDonald-Maier, Klaus D</creator><creator>Ur Rehman, Naveed</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8286-6139</orcidid></search><sort><creationdate>20190108</creationdate><title>A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors</title><author>Naveed, Khuram ; Ehsan, Shoaib ; McDonald-Maier, Klaus D ; Ur Rehman, Naveed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architectural engineering</topic><topic>binary hypothesis testing</topic><topic>CMOS</topic><topic>CMOS/CCD image sensors</topic><topic>Computer engineering</topic><topic>detection theory</topic><topic>Distribution functions</topic><topic>Gaussian and Poisson denoising</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Image acquisition</topic><topic>Image detection</topic><topic>International conferences</topic><topic>multiscale</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Normal distribution</topic><topic>Principal components analysis</topic><topic>Random noise</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Theory</topic><topic>variance stability transformation (VST)</topic><topic>Variations</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naveed, Khuram</creatorcontrib><creatorcontrib>Ehsan, Shoaib</creatorcontrib><creatorcontrib>McDonald-Maier, Klaus D</creatorcontrib><creatorcontrib>Ur Rehman, Naveed</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naveed, Khuram</au><au>Ehsan, Shoaib</au><au>McDonald-Maier, Klaus D</au><au>Ur Rehman, Naveed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-01-08</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>206</spage><pages>206-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Output from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that end, we propose a generalized framework based on detection theory and hypothesis testing coupled with the variance stability transformation (VST) for Poisson or Poisson⁻Gaussian denoising. VST transforms signal-dependent Poisson noise to a signal independent Gaussian noise with stable variance. Subsequently, multiscale transforms are employed on the noisy image to segregate signal and noise into separate coefficients. That facilitates the application of local binary hypothesis testing on multiple scales using empirical distribution function (EDF) for the purpose of detection and removal of noise. We demonstrate the effectiveness of the proposed framework with different multiscale transforms and on a wide variety of input datasets.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30626102</pmid><doi>10.3390/s19010206</doi><orcidid>https://orcid.org/0000-0001-8286-6139</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2019-01, Vol.19 (1), p.206
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e48fecc9af1a4c45933a0592bf1b9f4c
source Publicly Available Content Database; PubMed Central
subjects Architectural engineering
binary hypothesis testing
CMOS
CMOS/CCD image sensors
Computer engineering
detection theory
Distribution functions
Gaussian and Poisson denoising
Hypotheses
Hypothesis testing
Image acquisition
Image detection
International conferences
multiscale
Noise
Noise reduction
Normal distribution
Principal components analysis
Random noise
Sensors
Signal processing
Theory
variance stability transformation (VST)
Variations
Wavelet transforms
title A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiscale%20Denoising%20Framework%20Using%20Detection%20Theory%20with%20Application%20to%20Images%20from%20CMOS/CCD%20Sensors&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Naveed,%20Khuram&rft.date=2019-01-08&rft.volume=19&rft.issue=1&rft.spage=206&rft.pages=206-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19010206&rft_dat=%3Cproquest_doaj_%3E2179310283%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-6ef202494fde5cad28bf29a0c91b32d73905188023edba52cd4e2a6db3f2b98c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232151748&rft_id=info:pmid/30626102&rfr_iscdi=true