Loading…

Accuracy evaluation of scour depth equations under the submerged vertical jet

Scouring of sediment materials under submerged vertical jets is shown at grade-control structures, downstream of weirs, and submerged vertical water jets have several uses, including seabed sediment removal and dredging in ocean engineering. Numerous studies have been conducted to demonstrate the sc...

Full description

Saved in:
Bibliographic Details
Published in:Aqua (London, England) England), 2023-04, Vol.72 (4), p.557-575
Main Authors: Guguloth, Sai, Pandey, Manish
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scouring of sediment materials under submerged vertical jets is shown at grade-control structures, downstream of weirs, and submerged vertical water jets have several uses, including seabed sediment removal and dredging in ocean engineering. Numerous studies have been conducted to demonstrate the scour process and the variation of scour profile utilizing various influencing parameters. Many researchers developed equations for predicting the scour hole characteristics. Previous studies identified two types of scour hole depth configurations: static and dynamic scour depth and the variation of scour hole variations differs for long- and short-impinging jet height conditions. In this study, extensive data on non-dimensional static and dynamic scour depth under short- and long-impinging jets acquired from prior literature, and the previously proposed equations of static and dynamic scour depth were analyzed using graphical and statistical analysis. The findings demonstrated that the relationships proposed by Aderibigbe and Rajaratnam (1996) for long-impinging jets and Amin et al. (2021) for short-impinging jets predict the static scour depth better than the other equations. The proposed equations for dynamic scour depth under long- and short-impinging jets are highly biased and inaccurate.
ISSN:2709-8028
2709-8036
DOI:10.2166/aqua.2023.015