Loading…

A Schottky-Type Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensor Prepared by Using Selective Annealing

Asymmetric metal-semiconductor-metal (MSM) aluminum gallium nitride (AlGaN) UV sensors with 24% Al were fabricated using a selective annealing technique that dramatically reduced the dark current density and improved the ohmic behavior and performance compared to a non-annealed sensor. Its dark curr...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (12), p.4243
Main Authors: Park, Byeong-Jun, Seol, Jeong-Hoon, Hahm, Sung-Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Asymmetric metal-semiconductor-metal (MSM) aluminum gallium nitride (AlGaN) UV sensors with 24% Al were fabricated using a selective annealing technique that dramatically reduced the dark current density and improved the ohmic behavior and performance compared to a non-annealed sensor. Its dark current density at a bias of −2.0 V and UV-to-visible rejection ratio (UVRR) at a bias of −7.0 V were 8.5 × 10−10 A/cm2 and 672, respectively, which are significant improvements over a non-annealed sensor with a dark current density of 1.3 × 10−7 A/cm2 and UVRR of 84, respectively. The results of a transmission electron microscopy analysis demonstrate that the annealing process caused interdiffusion between the metal layers; the contact behavior between Ti/Al/Ni/Au and AlGaN changed from rectifying to ohmic behavior. The findings from an X-ray photoelectron spectroscopy analysis revealed that the O 1s binding energy peak intensity associated with Ga oxide, which causes current leakage from the AlGaN surface, decreased from around 846 to 598 counts/s after selective annealing.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21124243