Loading…

Balancing the encoder and decoder complexity in image compression for classification

This paper presents a study on the computational complexity of coding for machines, with a focus on image coding for classification. We first conduct a comprehensive set of experiments to analyze the size of the encoder (which encodes images to bitstreams), the size of the decoder (which decodes bit...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on image and video processing 2024-10, Vol.2024 (1), p.38-20, Article 38
Main Authors: Duan, Zhihao, Hossain, Md Adnan Faisal, He, Jiangpeng, Zhu, Fengqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c310t-d611f9e8cd948b983d298476d954bde8d1021c46b0fc3cabe051f6b79c3148413
container_end_page 20
container_issue 1
container_start_page 38
container_title EURASIP journal on image and video processing
container_volume 2024
creator Duan, Zhihao
Hossain, Md Adnan Faisal
He, Jiangpeng
Zhu, Fengqing
description This paper presents a study on the computational complexity of coding for machines, with a focus on image coding for classification. We first conduct a comprehensive set of experiments to analyze the size of the encoder (which encodes images to bitstreams), the size of the decoder (which decodes bitstreams and predicts class labels), and their impact on the rate–accuracy trade-off in compression for classification. Through empirical investigation, we demonstrate a complementary relationship between the encoder size and the decoder size, i.e., it is better to employ a large encoder with a small decoder and vice versa. Motivated by this relationship, we introduce a feature compression-based method for efficient image compression for classification. By compressing features at various layers of a neural network-based image classification model, our method achieves adjustable rate, accuracy, and encoder (or decoder) size using a single model. Experimental results on ImageNet classification show that our method achieves competitive results with existing methods while being much more flexible. The code will be made publicly available.
doi_str_mv 10.1186/s13640-024-00652-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e4c587123e7b4345a3084b30c10b6d9e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e4c587123e7b4345a3084b30c10b6d9e</doaj_id><sourcerecordid>3119341188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-d611f9e8cd948b983d298476d954bde8d1021c46b0fc3cabe051f6b79c3148413</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIlMIPcIrEOeCN7cQ5QsWjUiUu5Wz5sSmpUrvYqUT_HrdBwImT16OZ2dFOll0DuQUQ1V0EWjFSkJIVhFS8LOAkm0Al6oKXAk7_zOfZRYxrQjjntJxkywfVK2c6t8qHd8zRGW8x5MrZ3OI4G7_Z9vjZDfu8c3m3USs8YgFj7LzLW584vUqftjNqSNBldtaqPuLV9zvN3p4el7OXYvH6PJ_dLwpDgQyFrQDaBoWxDRO6EdSWjWB1ZRvOtEVhgZRgWKVJa6hRGgmHttJ1k-RMMKDTbD76Wq_WchtStrCXXnXyCPiwkioMnelRIjNc1FBSrDWjjCtKBNOUGCA6LcTkdTN6bYP_2GEc5NrvgkvxJQVoKEt3FolVjiwTfIwB25-tQOShCTk2IVMT8tiEPMSkoygmslth-LX-R_UFYC-K9g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119341188</pqid></control><display><type>article</type><title>Balancing the encoder and decoder complexity in image compression for classification</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Duan, Zhihao ; Hossain, Md Adnan Faisal ; He, Jiangpeng ; Zhu, Fengqing</creator><creatorcontrib>Duan, Zhihao ; Hossain, Md Adnan Faisal ; He, Jiangpeng ; Zhu, Fengqing</creatorcontrib><description>This paper presents a study on the computational complexity of coding for machines, with a focus on image coding for classification. We first conduct a comprehensive set of experiments to analyze the size of the encoder (which encodes images to bitstreams), the size of the decoder (which decodes bitstreams and predicts class labels), and their impact on the rate–accuracy trade-off in compression for classification. Through empirical investigation, we demonstrate a complementary relationship between the encoder size and the decoder size, i.e., it is better to employ a large encoder with a small decoder and vice versa. Motivated by this relationship, we introduce a feature compression-based method for efficient image compression for classification. By compressing features at various layers of a neural network-based image classification model, our method achieves adjustable rate, accuracy, and encoder (or decoder) size using a single model. Experimental results on ImageNet classification show that our method achieves competitive results with existing methods while being much more flexible. The code will be made publicly available.</description><identifier>ISSN: 1687-5281</identifier><identifier>ISSN: 1687-5176</identifier><identifier>EISSN: 1687-5281</identifier><identifier>DOI: 10.1186/s13640-024-00652-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Biometrics ; Classification ; Coders ; Coding for machines ; Complexity ; Engineering ; Image classification ; Image coding ; Image compression ; Image Processing and Computer Vision ; Learned image compression ; Neural networks ; Pattern Recognition ; Rate–accuracy-complexity ; Signal,Image and Speech Processing ; Visual coding for humans and machines</subject><ispartof>EURASIP journal on image and video processing, 2024-10, Vol.2024 (1), p.38-20, Article 38</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-d611f9e8cd948b983d298476d954bde8d1021c46b0fc3cabe051f6b79c3148413</cites><orcidid>0000-0002-7948-4356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3119341188/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3119341188?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Duan, Zhihao</creatorcontrib><creatorcontrib>Hossain, Md Adnan Faisal</creatorcontrib><creatorcontrib>He, Jiangpeng</creatorcontrib><creatorcontrib>Zhu, Fengqing</creatorcontrib><title>Balancing the encoder and decoder complexity in image compression for classification</title><title>EURASIP journal on image and video processing</title><addtitle>J Image Video Proc</addtitle><description>This paper presents a study on the computational complexity of coding for machines, with a focus on image coding for classification. We first conduct a comprehensive set of experiments to analyze the size of the encoder (which encodes images to bitstreams), the size of the decoder (which decodes bitstreams and predicts class labels), and their impact on the rate–accuracy trade-off in compression for classification. Through empirical investigation, we demonstrate a complementary relationship between the encoder size and the decoder size, i.e., it is better to employ a large encoder with a small decoder and vice versa. Motivated by this relationship, we introduce a feature compression-based method for efficient image compression for classification. By compressing features at various layers of a neural network-based image classification model, our method achieves adjustable rate, accuracy, and encoder (or decoder) size using a single model. Experimental results on ImageNet classification show that our method achieves competitive results with existing methods while being much more flexible. The code will be made publicly available.</description><subject>Accuracy</subject><subject>Biometrics</subject><subject>Classification</subject><subject>Coders</subject><subject>Coding for machines</subject><subject>Complexity</subject><subject>Engineering</subject><subject>Image classification</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image Processing and Computer Vision</subject><subject>Learned image compression</subject><subject>Neural networks</subject><subject>Pattern Recognition</subject><subject>Rate–accuracy-complexity</subject><subject>Signal,Image and Speech Processing</subject><subject>Visual coding for humans and machines</subject><issn>1687-5281</issn><issn>1687-5176</issn><issn>1687-5281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctOwzAQjBBIlMIPcIrEOeCN7cQ5QsWjUiUu5Wz5sSmpUrvYqUT_HrdBwImT16OZ2dFOll0DuQUQ1V0EWjFSkJIVhFS8LOAkm0Al6oKXAk7_zOfZRYxrQjjntJxkywfVK2c6t8qHd8zRGW8x5MrZ3OI4G7_Z9vjZDfu8c3m3USs8YgFj7LzLW584vUqftjNqSNBldtaqPuLV9zvN3p4el7OXYvH6PJ_dLwpDgQyFrQDaBoWxDRO6EdSWjWB1ZRvOtEVhgZRgWKVJa6hRGgmHttJ1k-RMMKDTbD76Wq_WchtStrCXXnXyCPiwkioMnelRIjNc1FBSrDWjjCtKBNOUGCA6LcTkdTN6bYP_2GEc5NrvgkvxJQVoKEt3FolVjiwTfIwB25-tQOShCTk2IVMT8tiEPMSkoygmslth-LX-R_UFYC-K9g</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Duan, Zhihao</creator><creator>Hossain, Md Adnan Faisal</creator><creator>He, Jiangpeng</creator><creator>Zhu, Fengqing</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7948-4356</orcidid></search><sort><creationdate>20241022</creationdate><title>Balancing the encoder and decoder complexity in image compression for classification</title><author>Duan, Zhihao ; Hossain, Md Adnan Faisal ; He, Jiangpeng ; Zhu, Fengqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-d611f9e8cd948b983d298476d954bde8d1021c46b0fc3cabe051f6b79c3148413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Biometrics</topic><topic>Classification</topic><topic>Coders</topic><topic>Coding for machines</topic><topic>Complexity</topic><topic>Engineering</topic><topic>Image classification</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image Processing and Computer Vision</topic><topic>Learned image compression</topic><topic>Neural networks</topic><topic>Pattern Recognition</topic><topic>Rate–accuracy-complexity</topic><topic>Signal,Image and Speech Processing</topic><topic>Visual coding for humans and machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Zhihao</creatorcontrib><creatorcontrib>Hossain, Md Adnan Faisal</creatorcontrib><creatorcontrib>He, Jiangpeng</creatorcontrib><creatorcontrib>Zhu, Fengqing</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>EURASIP journal on image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Zhihao</au><au>Hossain, Md Adnan Faisal</au><au>He, Jiangpeng</au><au>Zhu, Fengqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing the encoder and decoder complexity in image compression for classification</atitle><jtitle>EURASIP journal on image and video processing</jtitle><stitle>J Image Video Proc</stitle><date>2024-10-22</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><spage>38</spage><epage>20</epage><pages>38-20</pages><artnum>38</artnum><issn>1687-5281</issn><issn>1687-5176</issn><eissn>1687-5281</eissn><abstract>This paper presents a study on the computational complexity of coding for machines, with a focus on image coding for classification. We first conduct a comprehensive set of experiments to analyze the size of the encoder (which encodes images to bitstreams), the size of the decoder (which decodes bitstreams and predicts class labels), and their impact on the rate–accuracy trade-off in compression for classification. Through empirical investigation, we demonstrate a complementary relationship between the encoder size and the decoder size, i.e., it is better to employ a large encoder with a small decoder and vice versa. Motivated by this relationship, we introduce a feature compression-based method for efficient image compression for classification. By compressing features at various layers of a neural network-based image classification model, our method achieves adjustable rate, accuracy, and encoder (or decoder) size using a single model. Experimental results on ImageNet classification show that our method achieves competitive results with existing methods while being much more flexible. The code will be made publicly available.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13640-024-00652-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7948-4356</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5281
ispartof EURASIP journal on image and video processing, 2024-10, Vol.2024 (1), p.38-20, Article 38
issn 1687-5281
1687-5176
1687-5281
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e4c587123e7b4345a3084b30c10b6d9e
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
subjects Accuracy
Biometrics
Classification
Coders
Coding for machines
Complexity
Engineering
Image classification
Image coding
Image compression
Image Processing and Computer Vision
Learned image compression
Neural networks
Pattern Recognition
Rate–accuracy-complexity
Signal,Image and Speech Processing
Visual coding for humans and machines
title Balancing the encoder and decoder complexity in image compression for classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20the%20encoder%20and%20decoder%20complexity%20in%20image%20compression%20for%20classification&rft.jtitle=EURASIP%20journal%20on%20image%20and%20video%20processing&rft.au=Duan,%20Zhihao&rft.date=2024-10-22&rft.volume=2024&rft.issue=1&rft.spage=38&rft.epage=20&rft.pages=38-20&rft.artnum=38&rft.issn=1687-5281&rft.eissn=1687-5281&rft_id=info:doi/10.1186/s13640-024-00652-1&rft_dat=%3Cproquest_doaj_%3E3119341188%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-d611f9e8cd948b983d298476d954bde8d1021c46b0fc3cabe051f6b79c3148413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119341188&rft_id=info:pmid/&rfr_iscdi=true