Loading…

Generative Modeling of InSAR Interferograms

Interferometric synthetic aperture radar (InSAR) has become an essential technique to detect surface variations due to volcanoes, earthquakes, landslides, glaciers, and aquifers. However, Earth's ionosphere, atmosphere, vegetation, surface runoff, etc., introduce noise that requires post‐proces...

Full description

Saved in:
Bibliographic Details
Published in:Earth and space science (Hoboken, N.J.) N.J.), 2019-12, Vol.6 (12), p.2671-2683
Main Authors: Rongier, Guillaume, Rude, Cody, Herring, Thomas, Pankratius, Victor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a5432-f587c7d16e4bc798102d0719ef54f3c3ae7d4f44c1a3b039218075f216b62a753
cites cdi_FETCH-LOGICAL-a5432-f587c7d16e4bc798102d0719ef54f3c3ae7d4f44c1a3b039218075f216b62a753
container_end_page 2683
container_issue 12
container_start_page 2671
container_title Earth and space science (Hoboken, N.J.)
container_volume 6
creator Rongier, Guillaume
Rude, Cody
Herring, Thomas
Pankratius, Victor
description Interferometric synthetic aperture radar (InSAR) has become an essential technique to detect surface variations due to volcanoes, earthquakes, landslides, glaciers, and aquifers. However, Earth's ionosphere, atmosphere, vegetation, surface runoff, etc., introduce noise that requires post‐processing to separate its components. This work defines a generator to create interferograms that include each of those components. Our approach leverages deformation models with real data, either directly or through machine learning using geostatistical methods. These methods result from previous developments to more efficiently and better simulate spatial variables and could replace some statistical approaches used in InSAR processing. We illustrate the use of the generator to simulate an artificial interferogram based on the 2015 Illapel earthquake and discuss the improved performance offered by geostatistical approaches compared with classical statistical ones. The generator establishes a tool for multiple applications (1) to evaluate InSAR correction workflows in controlled scenarios with known ground truth; (2) to develop training sets and generative methods for machine learning algorithms; and (3) to educate on InSAR and its principles. Key Points We introduce a software tool that can generate artificial interferograms for synthetic aperture radar (SAR) applications The tool leverages real data and geostatistical methods to generate and perturb interferogram components It can be used to evaluate InSAR error correction workflows, to enhance machine learning use with InSAR, and to teach InSAR principles
doi_str_mv 10.1029/2018EA000533
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e4c58809c7c1413184554cff31d42cd9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e4c58809c7c1413184554cff31d42cd9</doaj_id><sourcerecordid>2344184918</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5432-f587c7d16e4bc798102d0719ef54f3c3ae7d4f44c1a3b039218075f216b62a753</originalsourceid><addsrcrecordid>eNp9kc9LHDEYhoO0VLHeepaFXgTd-n35MclchEVWu2ApuO05ZDNftrPMTjSZtfjfN3atrB56SULy8PB-eRn7hPAFgdfnHNBMJwCghNhjB1wIMVZg5Lud8z47ynlVGOSqAi4_sH3BoZIC1AE7vaaekhvaBxp9iw11bb8cxTCa9fPJbVkHSoFSXCa3zh_Z--C6TEfP-yH7eTX9cfl1fPP9enY5uRk7JQUfB2W01w1WJBde16YEbUBjTUHJILxwpBsZpPToxAJEzdGAVoFjtai400ocstnW20S3snepXbv0aKNr7d-LmJbWpaH1HVmSXhkDtdceJQo0UinpQxDYSO6burgutq67zWJNjad-SK57JX390re_7DI-WA1QaQVFcPIsSPF-Q3mw6zZ76jrXU9xky4WqKiwFPKGf36CruEl9-apCSVnC1WgKdbalfIo5JwovYRDsU6l2t9SCH-8O8AL_q7AAuAV-tx09_ldmp_M5l5yLP9tlpp8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344184918</pqid></control><display><type>article</type><title>Generative Modeling of InSAR Interferograms</title><source>Wiley_OA刊</source><source>Publicly Available Content (ProQuest)</source><creator>Rongier, Guillaume ; Rude, Cody ; Herring, Thomas ; Pankratius, Victor</creator><creatorcontrib>Rongier, Guillaume ; Rude, Cody ; Herring, Thomas ; Pankratius, Victor</creatorcontrib><description>Interferometric synthetic aperture radar (InSAR) has become an essential technique to detect surface variations due to volcanoes, earthquakes, landslides, glaciers, and aquifers. However, Earth's ionosphere, atmosphere, vegetation, surface runoff, etc., introduce noise that requires post‐processing to separate its components. This work defines a generator to create interferograms that include each of those components. Our approach leverages deformation models with real data, either directly or through machine learning using geostatistical methods. These methods result from previous developments to more efficiently and better simulate spatial variables and could replace some statistical approaches used in InSAR processing. We illustrate the use of the generator to simulate an artificial interferogram based on the 2015 Illapel earthquake and discuss the improved performance offered by geostatistical approaches compared with classical statistical ones. The generator establishes a tool for multiple applications (1) to evaluate InSAR correction workflows in controlled scenarios with known ground truth; (2) to develop training sets and generative methods for machine learning algorithms; and (3) to educate on InSAR and its principles. Key Points We introduce a software tool that can generate artificial interferograms for synthetic aperture radar (SAR) applications The tool leverages real data and geostatistical methods to generate and perturb interferogram components It can be used to evaluate InSAR error correction workflows, to enhance machine learning use with InSAR, and to teach InSAR principles</description><identifier>ISSN: 2333-5084</identifier><identifier>EISSN: 2333-5084</identifier><identifier>DOI: 10.1029/2018EA000533</identifier><identifier>PMID: 32064305</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Avalanches ; Cryosphere ; Deformation ; Earthquake Ground Motions and Engineering Seismology ; Earthquakes ; Effusive Volcanism ; Error correction &amp; detection ; Explosive Volcanism ; generator ; Geodesy and Gravity ; Geological ; geostatistics ; Glaciers ; Glaciohydrology ; Informatics ; InSAR ; Instruments and Techniques ; Ionosphere ; Landslides ; Machine learning ; Mathematical Geophysics ; Mud Volcanism ; Natural Hazards ; Noise ; Oceanography: Physical ; Seismic activity ; Seismology ; surface deformation ; Surface runoff ; Technical Reports: Methods ; Topography ; Tsunamis and Storm Surges ; Values ; Volcanic Hazards and Risks ; Volcano Monitoring ; Volcano Seismology ; Volcanoes ; Volcanology ; Workflow</subject><ispartof>Earth and space science (Hoboken, N.J.), 2019-12, Vol.6 (12), p.2671-2683</ispartof><rights>2019. The Authors.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5432-f587c7d16e4bc798102d0719ef54f3c3ae7d4f44c1a3b039218075f216b62a753</citedby><cites>FETCH-LOGICAL-a5432-f587c7d16e4bc798102d0719ef54f3c3ae7d4f44c1a3b039218075f216b62a753</cites><orcidid>0000-0002-4658-6583 ; 0000-0002-5910-6868 ; 0000-0002-6030-0545 ; 0000-0002-9584-2600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2344184918/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2344184918?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32064305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rongier, Guillaume</creatorcontrib><creatorcontrib>Rude, Cody</creatorcontrib><creatorcontrib>Herring, Thomas</creatorcontrib><creatorcontrib>Pankratius, Victor</creatorcontrib><title>Generative Modeling of InSAR Interferograms</title><title>Earth and space science (Hoboken, N.J.)</title><addtitle>Earth Space Sci</addtitle><description>Interferometric synthetic aperture radar (InSAR) has become an essential technique to detect surface variations due to volcanoes, earthquakes, landslides, glaciers, and aquifers. However, Earth's ionosphere, atmosphere, vegetation, surface runoff, etc., introduce noise that requires post‐processing to separate its components. This work defines a generator to create interferograms that include each of those components. Our approach leverages deformation models with real data, either directly or through machine learning using geostatistical methods. These methods result from previous developments to more efficiently and better simulate spatial variables and could replace some statistical approaches used in InSAR processing. We illustrate the use of the generator to simulate an artificial interferogram based on the 2015 Illapel earthquake and discuss the improved performance offered by geostatistical approaches compared with classical statistical ones. The generator establishes a tool for multiple applications (1) to evaluate InSAR correction workflows in controlled scenarios with known ground truth; (2) to develop training sets and generative methods for machine learning algorithms; and (3) to educate on InSAR and its principles. Key Points We introduce a software tool that can generate artificial interferograms for synthetic aperture radar (SAR) applications The tool leverages real data and geostatistical methods to generate and perturb interferogram components It can be used to evaluate InSAR error correction workflows, to enhance machine learning use with InSAR, and to teach InSAR principles</description><subject>Algorithms</subject><subject>Avalanches</subject><subject>Cryosphere</subject><subject>Deformation</subject><subject>Earthquake Ground Motions and Engineering Seismology</subject><subject>Earthquakes</subject><subject>Effusive Volcanism</subject><subject>Error correction &amp; detection</subject><subject>Explosive Volcanism</subject><subject>generator</subject><subject>Geodesy and Gravity</subject><subject>Geological</subject><subject>geostatistics</subject><subject>Glaciers</subject><subject>Glaciohydrology</subject><subject>Informatics</subject><subject>InSAR</subject><subject>Instruments and Techniques</subject><subject>Ionosphere</subject><subject>Landslides</subject><subject>Machine learning</subject><subject>Mathematical Geophysics</subject><subject>Mud Volcanism</subject><subject>Natural Hazards</subject><subject>Noise</subject><subject>Oceanography: Physical</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>surface deformation</subject><subject>Surface runoff</subject><subject>Technical Reports: Methods</subject><subject>Topography</subject><subject>Tsunamis and Storm Surges</subject><subject>Values</subject><subject>Volcanic Hazards and Risks</subject><subject>Volcano Monitoring</subject><subject>Volcano Seismology</subject><subject>Volcanoes</subject><subject>Volcanology</subject><subject>Workflow</subject><issn>2333-5084</issn><issn>2333-5084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc9LHDEYhoO0VLHeepaFXgTd-n35MclchEVWu2ApuO05ZDNftrPMTjSZtfjfN3atrB56SULy8PB-eRn7hPAFgdfnHNBMJwCghNhjB1wIMVZg5Lud8z47ynlVGOSqAi4_sH3BoZIC1AE7vaaekhvaBxp9iw11bb8cxTCa9fPJbVkHSoFSXCa3zh_Z--C6TEfP-yH7eTX9cfl1fPP9enY5uRk7JQUfB2W01w1WJBde16YEbUBjTUHJILxwpBsZpPToxAJEzdGAVoFjtai400ocstnW20S3snepXbv0aKNr7d-LmJbWpaH1HVmSXhkDtdceJQo0UinpQxDYSO6burgutq67zWJNjad-SK57JX390re_7DI-WA1QaQVFcPIsSPF-Q3mw6zZ76jrXU9xky4WqKiwFPKGf36CruEl9-apCSVnC1WgKdbalfIo5JwovYRDsU6l2t9SCH-8O8AL_q7AAuAV-tx09_ldmp_M5l5yLP9tlpp8</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Rongier, Guillaume</creator><creator>Rude, Cody</creator><creator>Herring, Thomas</creator><creator>Pankratius, Victor</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4658-6583</orcidid><orcidid>https://orcid.org/0000-0002-5910-6868</orcidid><orcidid>https://orcid.org/0000-0002-6030-0545</orcidid><orcidid>https://orcid.org/0000-0002-9584-2600</orcidid></search><sort><creationdate>201912</creationdate><title>Generative Modeling of InSAR Interferograms</title><author>Rongier, Guillaume ; Rude, Cody ; Herring, Thomas ; Pankratius, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5432-f587c7d16e4bc798102d0719ef54f3c3ae7d4f44c1a3b039218075f216b62a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Avalanches</topic><topic>Cryosphere</topic><topic>Deformation</topic><topic>Earthquake Ground Motions and Engineering Seismology</topic><topic>Earthquakes</topic><topic>Effusive Volcanism</topic><topic>Error correction &amp; detection</topic><topic>Explosive Volcanism</topic><topic>generator</topic><topic>Geodesy and Gravity</topic><topic>Geological</topic><topic>geostatistics</topic><topic>Glaciers</topic><topic>Glaciohydrology</topic><topic>Informatics</topic><topic>InSAR</topic><topic>Instruments and Techniques</topic><topic>Ionosphere</topic><topic>Landslides</topic><topic>Machine learning</topic><topic>Mathematical Geophysics</topic><topic>Mud Volcanism</topic><topic>Natural Hazards</topic><topic>Noise</topic><topic>Oceanography: Physical</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>surface deformation</topic><topic>Surface runoff</topic><topic>Technical Reports: Methods</topic><topic>Topography</topic><topic>Tsunamis and Storm Surges</topic><topic>Values</topic><topic>Volcanic Hazards and Risks</topic><topic>Volcano Monitoring</topic><topic>Volcano Seismology</topic><topic>Volcanoes</topic><topic>Volcanology</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rongier, Guillaume</creatorcontrib><creatorcontrib>Rude, Cody</creatorcontrib><creatorcontrib>Herring, Thomas</creatorcontrib><creatorcontrib>Pankratius, Victor</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley Online Library website</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth and space science (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rongier, Guillaume</au><au>Rude, Cody</au><au>Herring, Thomas</au><au>Pankratius, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative Modeling of InSAR Interferograms</atitle><jtitle>Earth and space science (Hoboken, N.J.)</jtitle><addtitle>Earth Space Sci</addtitle><date>2019-12</date><risdate>2019</risdate><volume>6</volume><issue>12</issue><spage>2671</spage><epage>2683</epage><pages>2671-2683</pages><issn>2333-5084</issn><eissn>2333-5084</eissn><abstract>Interferometric synthetic aperture radar (InSAR) has become an essential technique to detect surface variations due to volcanoes, earthquakes, landslides, glaciers, and aquifers. However, Earth's ionosphere, atmosphere, vegetation, surface runoff, etc., introduce noise that requires post‐processing to separate its components. This work defines a generator to create interferograms that include each of those components. Our approach leverages deformation models with real data, either directly or through machine learning using geostatistical methods. These methods result from previous developments to more efficiently and better simulate spatial variables and could replace some statistical approaches used in InSAR processing. We illustrate the use of the generator to simulate an artificial interferogram based on the 2015 Illapel earthquake and discuss the improved performance offered by geostatistical approaches compared with classical statistical ones. The generator establishes a tool for multiple applications (1) to evaluate InSAR correction workflows in controlled scenarios with known ground truth; (2) to develop training sets and generative methods for machine learning algorithms; and (3) to educate on InSAR and its principles. Key Points We introduce a software tool that can generate artificial interferograms for synthetic aperture radar (SAR) applications The tool leverages real data and geostatistical methods to generate and perturb interferogram components It can be used to evaluate InSAR error correction workflows, to enhance machine learning use with InSAR, and to teach InSAR principles</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32064305</pmid><doi>10.1029/2018EA000533</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4658-6583</orcidid><orcidid>https://orcid.org/0000-0002-5910-6868</orcidid><orcidid>https://orcid.org/0000-0002-6030-0545</orcidid><orcidid>https://orcid.org/0000-0002-9584-2600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2333-5084
ispartof Earth and space science (Hoboken, N.J.), 2019-12, Vol.6 (12), p.2671-2683
issn 2333-5084
2333-5084
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e4c58809c7c1413184554cff31d42cd9
source Wiley_OA刊; Publicly Available Content (ProQuest)
subjects Algorithms
Avalanches
Cryosphere
Deformation
Earthquake Ground Motions and Engineering Seismology
Earthquakes
Effusive Volcanism
Error correction & detection
Explosive Volcanism
generator
Geodesy and Gravity
Geological
geostatistics
Glaciers
Glaciohydrology
Informatics
InSAR
Instruments and Techniques
Ionosphere
Landslides
Machine learning
Mathematical Geophysics
Mud Volcanism
Natural Hazards
Noise
Oceanography: Physical
Seismic activity
Seismology
surface deformation
Surface runoff
Technical Reports: Methods
Topography
Tsunamis and Storm Surges
Values
Volcanic Hazards and Risks
Volcano Monitoring
Volcano Seismology
Volcanoes
Volcanology
Workflow
title Generative Modeling of InSAR Interferograms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20Modeling%20of%20InSAR%20Interferograms&rft.jtitle=Earth%20and%20space%20science%20(Hoboken,%20N.J.)&rft.au=Rongier,%20Guillaume&rft.date=2019-12&rft.volume=6&rft.issue=12&rft.spage=2671&rft.epage=2683&rft.pages=2671-2683&rft.issn=2333-5084&rft.eissn=2333-5084&rft_id=info:doi/10.1029/2018EA000533&rft_dat=%3Cproquest_doaj_%3E2344184918%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5432-f587c7d16e4bc798102d0719ef54f3c3ae7d4f44c1a3b039218075f216b62a753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344184918&rft_id=info:pmid/32064305&rfr_iscdi=true