Loading…

Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland

Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is u...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2022-07, Vol.11 (7), p.1414
Main Authors: Sun, Yue-Mei, Wang, Xin-Yue, Zhou, Xin-Ru, Zhang, Chong, Liu, Ke-Jian, Zhang, Fu-Yin, Xiang, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963
cites cdi_FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963
container_end_page
container_issue 7
container_start_page 1414
container_title Antioxidants
container_volume 11
creator Sun, Yue-Mei
Wang, Xin-Yue
Zhou, Xin-Ru
Zhang, Chong
Liu, Ke-Jian
Zhang, Fu-Yin
Xiang, Bin
description Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton’s duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage.
doi_str_mv 10.3390/antiox11071414
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e4d55aff0dc54dd296cd070f1994da46</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e4d55aff0dc54dd296cd070f1994da46</doaj_id><sourcerecordid>2693873457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963</originalsourceid><addsrcrecordid>eNpdks1rHCEUwKW0NGGba89CL71squPHjJdCSNs0kBJI2rP48dx1mdVUZ0Ly39fNhpKNF5_648fzvYfQR0pOGVPki0lTzA-Ukp5yyt-g4470cslUR9--iI_QSa0b0paibCDqPTpiYhiagB-jdGvG6Euu0QM-28IYczETVHxjfDRNn_A3szUrwPYR34CfXUwr_CtO2a1z8iWaEV8_RN_Qe8C3U4FacUx4WrfTbLcm-Wjn0RR8Mbb4A3oXzFjh5HlfoD8_vv8-_7m8ur64PD-7Wjou6bSkkopgmPW9HwwDJbwFKnsrBFXeDeA5s05aEBBkF1iQEPrAiXOWhM4qyRbocu_12Wz0XYlbUx51NlE_XeSy0qZM0Y2ggXshTAjEO8G975R0nvQkUKW4N3zn-rp33bX_gHeQpmLGA-nhS4prvcr3WjFK-yfB52dByX9nqJPexupgbAWBPFfdSSW6odv1ZIE-vUI3eS6plWpHsaFnXPSNOt1TrjWuFgj_k6FE7yZDH04G-wf2ZK5i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693873457</pqid></control><display><type>article</type><title>Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sun, Yue-Mei ; Wang, Xin-Yue ; Zhou, Xin-Ru ; Zhang, Chong ; Liu, Ke-Jian ; Zhang, Fu-Yin ; Xiang, Bin</creator><creatorcontrib>Sun, Yue-Mei ; Wang, Xin-Yue ; Zhou, Xin-Ru ; Zhang, Chong ; Liu, Ke-Jian ; Zhang, Fu-Yin ; Xiang, Bin</creatorcontrib><description>Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton’s duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox11071414</identifier><identifier>PMID: 35883904</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adenosine triphosphate ; Animal models ; Antioxidants ; Apoptosis ; Cancer therapies ; Caspase-3 ; Catalase ; Cytochrome ; Cytochrome c ; Cytology ; Exocrine glands ; Glutathione ; Head &amp; neck cancer ; Membrane potential ; Mitochondria ; mitochondrion ; Oxidative stress ; radiation damage ; Radiation therapy ; Reactive oxygen species ; salidroside ; Saliva ; Salivary gland ; Submandibular gland ; Superoxide dismutase ; Transmission electron microscopy ; Ultrastructure</subject><ispartof>Antioxidants, 2022-07, Vol.11 (7), p.1414</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963</citedby><cites>FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963</cites><orcidid>0000-0002-7623-6023 ; 0000-0003-3884-3348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2693873457/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2693873457?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Sun, Yue-Mei</creatorcontrib><creatorcontrib>Wang, Xin-Yue</creatorcontrib><creatorcontrib>Zhou, Xin-Ru</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Liu, Ke-Jian</creatorcontrib><creatorcontrib>Zhang, Fu-Yin</creatorcontrib><creatorcontrib>Xiang, Bin</creatorcontrib><title>Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland</title><title>Antioxidants</title><description>Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton’s duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage.</description><subject>Adenosine triphosphate</subject><subject>Animal models</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Cancer therapies</subject><subject>Caspase-3</subject><subject>Catalase</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytology</subject><subject>Exocrine glands</subject><subject>Glutathione</subject><subject>Head &amp; neck cancer</subject><subject>Membrane potential</subject><subject>Mitochondria</subject><subject>mitochondrion</subject><subject>Oxidative stress</subject><subject>radiation damage</subject><subject>Radiation therapy</subject><subject>Reactive oxygen species</subject><subject>salidroside</subject><subject>Saliva</subject><subject>Salivary gland</subject><subject>Submandibular gland</subject><subject>Superoxide dismutase</subject><subject>Transmission electron microscopy</subject><subject>Ultrastructure</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1rHCEUwKW0NGGba89CL71squPHjJdCSNs0kBJI2rP48dx1mdVUZ0Ly39fNhpKNF5_648fzvYfQR0pOGVPki0lTzA-Ukp5yyt-g4470cslUR9--iI_QSa0b0paibCDqPTpiYhiagB-jdGvG6Euu0QM-28IYczETVHxjfDRNn_A3szUrwPYR34CfXUwr_CtO2a1z8iWaEV8_RN_Qe8C3U4FacUx4WrfTbLcm-Wjn0RR8Mbb4A3oXzFjh5HlfoD8_vv8-_7m8ur64PD-7Wjou6bSkkopgmPW9HwwDJbwFKnsrBFXeDeA5s05aEBBkF1iQEPrAiXOWhM4qyRbocu_12Wz0XYlbUx51NlE_XeSy0qZM0Y2ggXshTAjEO8G975R0nvQkUKW4N3zn-rp33bX_gHeQpmLGA-nhS4prvcr3WjFK-yfB52dByX9nqJPexupgbAWBPFfdSSW6odv1ZIE-vUI3eS6plWpHsaFnXPSNOt1TrjWuFgj_k6FE7yZDH04G-wf2ZK5i</recordid><startdate>20220721</startdate><enddate>20220721</enddate><creator>Sun, Yue-Mei</creator><creator>Wang, Xin-Yue</creator><creator>Zhou, Xin-Ru</creator><creator>Zhang, Chong</creator><creator>Liu, Ke-Jian</creator><creator>Zhang, Fu-Yin</creator><creator>Xiang, Bin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7623-6023</orcidid><orcidid>https://orcid.org/0000-0003-3884-3348</orcidid></search><sort><creationdate>20220721</creationdate><title>Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland</title><author>Sun, Yue-Mei ; Wang, Xin-Yue ; Zhou, Xin-Ru ; Zhang, Chong ; Liu, Ke-Jian ; Zhang, Fu-Yin ; Xiang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine triphosphate</topic><topic>Animal models</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Cancer therapies</topic><topic>Caspase-3</topic><topic>Catalase</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytology</topic><topic>Exocrine glands</topic><topic>Glutathione</topic><topic>Head &amp; neck cancer</topic><topic>Membrane potential</topic><topic>Mitochondria</topic><topic>mitochondrion</topic><topic>Oxidative stress</topic><topic>radiation damage</topic><topic>Radiation therapy</topic><topic>Reactive oxygen species</topic><topic>salidroside</topic><topic>Saliva</topic><topic>Salivary gland</topic><topic>Submandibular gland</topic><topic>Superoxide dismutase</topic><topic>Transmission electron microscopy</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yue-Mei</creatorcontrib><creatorcontrib>Wang, Xin-Yue</creatorcontrib><creatorcontrib>Zhou, Xin-Ru</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Liu, Ke-Jian</creatorcontrib><creatorcontrib>Zhang, Fu-Yin</creatorcontrib><creatorcontrib>Xiang, Bin</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yue-Mei</au><au>Wang, Xin-Yue</au><au>Zhou, Xin-Ru</au><au>Zhang, Chong</au><au>Liu, Ke-Jian</au><au>Zhang, Fu-Yin</au><au>Xiang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland</atitle><jtitle>Antioxidants</jtitle><date>2022-07-21</date><risdate>2022</risdate><volume>11</volume><issue>7</issue><spage>1414</spage><pages>1414-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton’s duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35883904</pmid><doi>10.3390/antiox11071414</doi><orcidid>https://orcid.org/0000-0002-7623-6023</orcidid><orcidid>https://orcid.org/0000-0003-3884-3348</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3921
ispartof Antioxidants, 2022-07, Vol.11 (7), p.1414
issn 2076-3921
2076-3921
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e4d55aff0dc54dd296cd070f1994da46
source Publicly Available Content Database; PubMed Central
subjects Adenosine triphosphate
Animal models
Antioxidants
Apoptosis
Cancer therapies
Caspase-3
Catalase
Cytochrome
Cytochrome c
Cytology
Exocrine glands
Glutathione
Head & neck cancer
Membrane potential
Mitochondria
mitochondrion
Oxidative stress
radiation damage
Radiation therapy
Reactive oxygen species
salidroside
Saliva
Salivary gland
Submandibular gland
Superoxide dismutase
Transmission electron microscopy
Ultrastructure
title Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salidroside%20Ameliorates%20Radiation%20Damage%20by%20Reducing%20Mitochondrial%20Oxidative%20Stress%20in%20the%20Submandibular%20Gland&rft.jtitle=Antioxidants&rft.au=Sun,%20Yue-Mei&rft.date=2022-07-21&rft.volume=11&rft.issue=7&rft.spage=1414&rft.pages=1414-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox11071414&rft_dat=%3Cproquest_doaj_%3E2693873457%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2693873457&rft_id=info:pmid/35883904&rfr_iscdi=true