Loading…
Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland
Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is u...
Saved in:
Published in: | Antioxidants 2022-07, Vol.11 (7), p.1414 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963 |
container_end_page | |
container_issue | 7 |
container_start_page | 1414 |
container_title | Antioxidants |
container_volume | 11 |
creator | Sun, Yue-Mei Wang, Xin-Yue Zhou, Xin-Ru Zhang, Chong Liu, Ke-Jian Zhang, Fu-Yin Xiang, Bin |
description | Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton’s duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage. |
doi_str_mv | 10.3390/antiox11071414 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e4d55aff0dc54dd296cd070f1994da46</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e4d55aff0dc54dd296cd070f1994da46</doaj_id><sourcerecordid>2693873457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963</originalsourceid><addsrcrecordid>eNpdks1rHCEUwKW0NGGba89CL71squPHjJdCSNs0kBJI2rP48dx1mdVUZ0Ly39fNhpKNF5_648fzvYfQR0pOGVPki0lTzA-Ukp5yyt-g4470cslUR9--iI_QSa0b0paibCDqPTpiYhiagB-jdGvG6Euu0QM-28IYczETVHxjfDRNn_A3szUrwPYR34CfXUwr_CtO2a1z8iWaEV8_RN_Qe8C3U4FacUx4WrfTbLcm-Wjn0RR8Mbb4A3oXzFjh5HlfoD8_vv8-_7m8ur64PD-7Wjou6bSkkopgmPW9HwwDJbwFKnsrBFXeDeA5s05aEBBkF1iQEPrAiXOWhM4qyRbocu_12Wz0XYlbUx51NlE_XeSy0qZM0Y2ggXshTAjEO8G975R0nvQkUKW4N3zn-rp33bX_gHeQpmLGA-nhS4prvcr3WjFK-yfB52dByX9nqJPexupgbAWBPFfdSSW6odv1ZIE-vUI3eS6plWpHsaFnXPSNOt1TrjWuFgj_k6FE7yZDH04G-wf2ZK5i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693873457</pqid></control><display><type>article</type><title>Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sun, Yue-Mei ; Wang, Xin-Yue ; Zhou, Xin-Ru ; Zhang, Chong ; Liu, Ke-Jian ; Zhang, Fu-Yin ; Xiang, Bin</creator><creatorcontrib>Sun, Yue-Mei ; Wang, Xin-Yue ; Zhou, Xin-Ru ; Zhang, Chong ; Liu, Ke-Jian ; Zhang, Fu-Yin ; Xiang, Bin</creatorcontrib><description>Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton’s duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox11071414</identifier><identifier>PMID: 35883904</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adenosine triphosphate ; Animal models ; Antioxidants ; Apoptosis ; Cancer therapies ; Caspase-3 ; Catalase ; Cytochrome ; Cytochrome c ; Cytology ; Exocrine glands ; Glutathione ; Head & neck cancer ; Membrane potential ; Mitochondria ; mitochondrion ; Oxidative stress ; radiation damage ; Radiation therapy ; Reactive oxygen species ; salidroside ; Saliva ; Salivary gland ; Submandibular gland ; Superoxide dismutase ; Transmission electron microscopy ; Ultrastructure</subject><ispartof>Antioxidants, 2022-07, Vol.11 (7), p.1414</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963</citedby><cites>FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963</cites><orcidid>0000-0002-7623-6023 ; 0000-0003-3884-3348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2693873457/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2693873457?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Sun, Yue-Mei</creatorcontrib><creatorcontrib>Wang, Xin-Yue</creatorcontrib><creatorcontrib>Zhou, Xin-Ru</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Liu, Ke-Jian</creatorcontrib><creatorcontrib>Zhang, Fu-Yin</creatorcontrib><creatorcontrib>Xiang, Bin</creatorcontrib><title>Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland</title><title>Antioxidants</title><description>Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton’s duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage.</description><subject>Adenosine triphosphate</subject><subject>Animal models</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Cancer therapies</subject><subject>Caspase-3</subject><subject>Catalase</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytology</subject><subject>Exocrine glands</subject><subject>Glutathione</subject><subject>Head & neck cancer</subject><subject>Membrane potential</subject><subject>Mitochondria</subject><subject>mitochondrion</subject><subject>Oxidative stress</subject><subject>radiation damage</subject><subject>Radiation therapy</subject><subject>Reactive oxygen species</subject><subject>salidroside</subject><subject>Saliva</subject><subject>Salivary gland</subject><subject>Submandibular gland</subject><subject>Superoxide dismutase</subject><subject>Transmission electron microscopy</subject><subject>Ultrastructure</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1rHCEUwKW0NGGba89CL71squPHjJdCSNs0kBJI2rP48dx1mdVUZ0Ly39fNhpKNF5_648fzvYfQR0pOGVPki0lTzA-Ukp5yyt-g4470cslUR9--iI_QSa0b0paibCDqPTpiYhiagB-jdGvG6Euu0QM-28IYczETVHxjfDRNn_A3szUrwPYR34CfXUwr_CtO2a1z8iWaEV8_RN_Qe8C3U4FacUx4WrfTbLcm-Wjn0RR8Mbb4A3oXzFjh5HlfoD8_vv8-_7m8ur64PD-7Wjou6bSkkopgmPW9HwwDJbwFKnsrBFXeDeA5s05aEBBkF1iQEPrAiXOWhM4qyRbocu_12Wz0XYlbUx51NlE_XeSy0qZM0Y2ggXshTAjEO8G975R0nvQkUKW4N3zn-rp33bX_gHeQpmLGA-nhS4prvcr3WjFK-yfB52dByX9nqJPexupgbAWBPFfdSSW6odv1ZIE-vUI3eS6plWpHsaFnXPSNOt1TrjWuFgj_k6FE7yZDH04G-wf2ZK5i</recordid><startdate>20220721</startdate><enddate>20220721</enddate><creator>Sun, Yue-Mei</creator><creator>Wang, Xin-Yue</creator><creator>Zhou, Xin-Ru</creator><creator>Zhang, Chong</creator><creator>Liu, Ke-Jian</creator><creator>Zhang, Fu-Yin</creator><creator>Xiang, Bin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7623-6023</orcidid><orcidid>https://orcid.org/0000-0003-3884-3348</orcidid></search><sort><creationdate>20220721</creationdate><title>Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland</title><author>Sun, Yue-Mei ; Wang, Xin-Yue ; Zhou, Xin-Ru ; Zhang, Chong ; Liu, Ke-Jian ; Zhang, Fu-Yin ; Xiang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine triphosphate</topic><topic>Animal models</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Cancer therapies</topic><topic>Caspase-3</topic><topic>Catalase</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytology</topic><topic>Exocrine glands</topic><topic>Glutathione</topic><topic>Head & neck cancer</topic><topic>Membrane potential</topic><topic>Mitochondria</topic><topic>mitochondrion</topic><topic>Oxidative stress</topic><topic>radiation damage</topic><topic>Radiation therapy</topic><topic>Reactive oxygen species</topic><topic>salidroside</topic><topic>Saliva</topic><topic>Salivary gland</topic><topic>Submandibular gland</topic><topic>Superoxide dismutase</topic><topic>Transmission electron microscopy</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yue-Mei</creatorcontrib><creatorcontrib>Wang, Xin-Yue</creatorcontrib><creatorcontrib>Zhou, Xin-Ru</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Liu, Ke-Jian</creatorcontrib><creatorcontrib>Zhang, Fu-Yin</creatorcontrib><creatorcontrib>Xiang, Bin</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yue-Mei</au><au>Wang, Xin-Yue</au><au>Zhou, Xin-Ru</au><au>Zhang, Chong</au><au>Liu, Ke-Jian</au><au>Zhang, Fu-Yin</au><au>Xiang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland</atitle><jtitle>Antioxidants</jtitle><date>2022-07-21</date><risdate>2022</risdate><volume>11</volume><issue>7</issue><spage>1414</spage><pages>1414-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton’s duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35883904</pmid><doi>10.3390/antiox11071414</doi><orcidid>https://orcid.org/0000-0002-7623-6023</orcidid><orcidid>https://orcid.org/0000-0003-3884-3348</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3921 |
ispartof | Antioxidants, 2022-07, Vol.11 (7), p.1414 |
issn | 2076-3921 2076-3921 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e4d55aff0dc54dd296cd070f1994da46 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adenosine triphosphate Animal models Antioxidants Apoptosis Cancer therapies Caspase-3 Catalase Cytochrome Cytochrome c Cytology Exocrine glands Glutathione Head & neck cancer Membrane potential Mitochondria mitochondrion Oxidative stress radiation damage Radiation therapy Reactive oxygen species salidroside Saliva Salivary gland Submandibular gland Superoxide dismutase Transmission electron microscopy Ultrastructure |
title | Salidroside Ameliorates Radiation Damage by Reducing Mitochondrial Oxidative Stress in the Submandibular Gland |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salidroside%20Ameliorates%20Radiation%20Damage%20by%20Reducing%20Mitochondrial%20Oxidative%20Stress%20in%20the%20Submandibular%20Gland&rft.jtitle=Antioxidants&rft.au=Sun,%20Yue-Mei&rft.date=2022-07-21&rft.volume=11&rft.issue=7&rft.spage=1414&rft.pages=1414-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox11071414&rft_dat=%3Cproquest_doaj_%3E2693873457%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-1615fa3bd7d8a3e95dbe167b5519dc8ed43bc6be5ef62f3f6ef7f40ccb0f2b963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2693873457&rft_id=info:pmid/35883904&rfr_iscdi=true |