Loading…

Non-Destructive Assessment of Chicken Egg Fertility

Total hatching egg set (for both egg production chicks and broilers) in the Agriculture and Agri-Food Canada report 2017 was over 1.0 billion. With the fertility rate for this year observed to be around 82%, there were about 180 million unhatched eggs (worth over 300 million Canadian dollars) incuba...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (19), p.5546
Main Authors: Adegbenjo, Adeyemi O, Liu, Li, Ngadi, Michael O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Total hatching egg set (for both egg production chicks and broilers) in the Agriculture and Agri-Food Canada report 2017 was over 1.0 billion. With the fertility rate for this year observed to be around 82%, there were about 180 million unhatched eggs (worth over 300 million Canadian dollars) incubated in Canada for the year 2017 alone. These non-hatching (non-fertile) eggs can find useful applications as commercial table eggs or low-grade food stock if they can be detected early and isolated accordingly preferably prior to incubation. The conventional method of chicken egg fertility assessment termed candling, is subjective, cumbersome, slow, and eventually inefficient, leading to huge economic losses. Hence, there is a need for a non-destructive, fast and online prediction technology to assist with early chicken egg fertility identification problem. This paper reviewed existing non-destructive approaches including ultrasound and dielectric measurements, thermal imaging, machine vision, spectroscopy, and hyperspectral imaging. Hyperspectral imaging was extensively discussed, being an emerging new technology with great potential. Suggestions were finally proffered towards building futuristic robust model(s) for early detection of chicken egg fertility.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20195546