Loading…
Oleuropein Relieves Pancreatic Ischemia Reperfusion Injury in Rats by Suppressing Inflammation and Oxidative Stress through HMGB1/NF-κB Pathway
Oleuropein (OLP) is a naturally occurring phenolic compound in olive plant with antioxidant and anti-inflammatory potential and can possibly be used in treating pancreatic injuries. This investigation aimed to follow the molecular mechanism behind the potential therapeutic effect of OLP against panc...
Saved in:
Published in: | International journal of molecular sciences 2024-09, Vol.25 (18), p.10171 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oleuropein (OLP) is a naturally occurring phenolic compound in olive plant with antioxidant and anti-inflammatory potential and can possibly be used in treating pancreatic injuries. This investigation aimed to follow the molecular mechanism behind the potential therapeutic effect of OLP against pancreatic injury persuaded by ischemia-reperfusion (I/R). Pancreatic I/R injury was induced by splenic artery occlusion for 60 min followed by reperfusion. Oral administration of OLP (10 and 20 mg/kg) for 2 days significantly alleviated I/R-persuaded oxidative damage and inflammatory responses in pancreatic tissue as indicated by the decreased malondialdehyde (MDA) content and increased glutathione peroxidase (GPx) activity, accompanied by the suppression of myeloperoxidase (MPO) activity and reduced levels of interleukin-1beta (IL-1β), nuclear factor kappa B (NF-κB), and tumor necrosis factor alpha (TNF-α) in pancreatic tissues. Furthermore, OLP treatment markedly restored the serum levels of amylase, trypsinogen-activated peptide (TAP), and lipase, with concurrent improvement in pancreatic histopathological alterations. Moreover, treatment with OLP regulated the pancreatic expression of inducible nitric oxide synthase (iNOS) and high-mobility group box 1 (HMGB1) relative to rats of the pancreatic IR group. Thus, OLP treatment significantly alleviates the I/R-induced pancreatic injury by inhibiting oxidative stress and inflammation in rats through downregulation of HMGB1 and its downstream NF-κB signaling pathway. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms251810171 |