Loading…
MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH
X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and quantitative analysis of static and dy...
Saved in:
Published in: | International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2018-09, Vol.XLII-1, p.101-106 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 106 |
container_issue | |
container_start_page | 101 |
container_title | International archives of the photogrammetry, remote sensing and spatial information sciences. |
container_volume | XLII-1 |
creator | Chow, J. C. K. Lichti, D. D. Ang, K. D. Al-Durgham, K. Kuntze, G. Sharma, G. Ronsky, J. |
description | X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and quantitative analysis of static and dynamic X-ray images, the data should be free of systematic biases. Besides precise fabrication of hardware, software-based calibration solutions are commonly used for modelling the distortions. In this primary research study, a robust photogrammetric bundle adjustment was used to model the projective geometry of two fluoroscopic X-ray imaging systems. However, instead of relying on an expert photogrammetrist’s knowledge and judgement to decide on a parametric model for describing the systematic errors, a self-tuning data-driven approach is used to model the complex non-linear distortion profile of the sensors. Quality control from the experiment showed that 0.06 mm to 0.09 mm 3D reconstruction accuracy was achievable post-calibration using merely 15 X-ray images. As part of the bundle adjustment, the location of the virtual fluoroscopic system relative to the target field can also be spatially resected with an RMSE between 3.10 mm and 3.31 mm. |
doi_str_mv | 10.5194/isprs-archives-XLII-1-101-2018 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e5184ad8f40e41afa4a3ca765ecda969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e5184ad8f40e41afa4a3ca765ecda969</doaj_id><sourcerecordid>oai_doaj_org_article_e5184ad8f40e41afa4a3ca765ecda969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-96eb97a58a8445be651c350c0d089b75271a00f2c775da48ddbe07667f601c4c3</originalsourceid><addsrcrecordid>eNpNkc1O3DAURqMKpCLgHbzqzmBPbCfZVDKJZ8ZVEo8cp4WV5XEcCAINSkZIfYa-dBOgFav7992zOVH0DaMrijNyPUwv4wTd6B-G1zDB21JKiCFGGK4QTr9EZ6s5BTMUk5NP_dfocpoeEUKYMEYRPYv-VKoQZSnrDRBaK90AWYNbqPkdWJet0qrJ1U7mQFZ8s4Sau8aIqgFts0y7rTJqo3lVCaPn1E1bF6UAvPjRNqYStQG_pNkCDgpuOCy0_Clq0IhyDXNeyhvNjVQ14LudVjzfXkSnvXuawuVHPY_atTD5FpZqI-cH6HGGjzBjYZ8ljqYuJYTuA6PYxxR51KE02yd0lWCHUL_ySUI7R9Ku2weUMJb0DGFPfHweyXdud3CP9mUcnt342x7cYN8Wh_HeuvE4-KdgA8UpcV3aExQIdr0jLvYuYTT4zmUsm1nf31l-PEzTGPr_PIzsYsq-mbL_TNnFlMXzFdvFVPwX4SeCtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Chow, J. C. K. ; Lichti, D. D. ; Ang, K. D. ; Al-Durgham, K. ; Kuntze, G. ; Sharma, G. ; Ronsky, J.</creator><creatorcontrib>Chow, J. C. K. ; Lichti, D. D. ; Ang, K. D. ; Al-Durgham, K. ; Kuntze, G. ; Sharma, G. ; Ronsky, J.</creatorcontrib><description>X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and quantitative analysis of static and dynamic X-ray images, the data should be free of systematic biases. Besides precise fabrication of hardware, software-based calibration solutions are commonly used for modelling the distortions. In this primary research study, a robust photogrammetric bundle adjustment was used to model the projective geometry of two fluoroscopic X-ray imaging systems. However, instead of relying on an expert photogrammetrist’s knowledge and judgement to decide on a parametric model for describing the systematic errors, a self-tuning data-driven approach is used to model the complex non-linear distortion profile of the sensors. Quality control from the experiment showed that 0.06 mm to 0.09 mm 3D reconstruction accuracy was achievable post-calibration using merely 15 X-ray images. As part of the bundle adjustment, the location of the virtual fluoroscopic system relative to the target field can also be spatially resected with an RMSE between 3.10 mm and 3.31 mm.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLII-1-101-2018</identifier><language>eng</language><publisher>Copernicus Publications</publisher><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2018-09, Vol.XLII-1, p.101-106</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chow, J. C. K.</creatorcontrib><creatorcontrib>Lichti, D. D.</creatorcontrib><creatorcontrib>Ang, K. D.</creatorcontrib><creatorcontrib>Al-Durgham, K.</creatorcontrib><creatorcontrib>Kuntze, G.</creatorcontrib><creatorcontrib>Sharma, G.</creatorcontrib><creatorcontrib>Ronsky, J.</creatorcontrib><title>MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and quantitative analysis of static and dynamic X-ray images, the data should be free of systematic biases. Besides precise fabrication of hardware, software-based calibration solutions are commonly used for modelling the distortions. In this primary research study, a robust photogrammetric bundle adjustment was used to model the projective geometry of two fluoroscopic X-ray imaging systems. However, instead of relying on an expert photogrammetrist’s knowledge and judgement to decide on a parametric model for describing the systematic errors, a self-tuning data-driven approach is used to model the complex non-linear distortion profile of the sensors. Quality control from the experiment showed that 0.06 mm to 0.09 mm 3D reconstruction accuracy was achievable post-calibration using merely 15 X-ray images. As part of the bundle adjustment, the location of the virtual fluoroscopic system relative to the target field can also be spatially resected with an RMSE between 3.10 mm and 3.31 mm.</description><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkc1O3DAURqMKpCLgHbzqzmBPbCfZVDKJZ8ZVEo8cp4WV5XEcCAINSkZIfYa-dBOgFav7992zOVH0DaMrijNyPUwv4wTd6B-G1zDB21JKiCFGGK4QTr9EZ6s5BTMUk5NP_dfocpoeEUKYMEYRPYv-VKoQZSnrDRBaK90AWYNbqPkdWJet0qrJ1U7mQFZ8s4Sau8aIqgFts0y7rTJqo3lVCaPn1E1bF6UAvPjRNqYStQG_pNkCDgpuOCy0_Clq0IhyDXNeyhvNjVQ14LudVjzfXkSnvXuawuVHPY_atTD5FpZqI-cH6HGGjzBjYZ8ljqYuJYTuA6PYxxR51KE02yd0lWCHUL_ySUI7R9Ku2weUMJb0DGFPfHweyXdud3CP9mUcnt342x7cYN8Wh_HeuvE4-KdgA8UpcV3aExQIdr0jLvYuYTT4zmUsm1nf31l-PEzTGPr_PIzsYsq-mbL_TNnFlMXzFdvFVPwX4SeCtw</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Chow, J. C. K.</creator><creator>Lichti, D. D.</creator><creator>Ang, K. D.</creator><creator>Al-Durgham, K.</creator><creator>Kuntze, G.</creator><creator>Sharma, G.</creator><creator>Ronsky, J.</creator><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20180926</creationdate><title>MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH</title><author>Chow, J. C. K. ; Lichti, D. D. ; Ang, K. D. ; Al-Durgham, K. ; Kuntze, G. ; Sharma, G. ; Ronsky, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-96eb97a58a8445be651c350c0d089b75271a00f2c775da48ddbe07667f601c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chow, J. C. K.</creatorcontrib><creatorcontrib>Lichti, D. D.</creatorcontrib><creatorcontrib>Ang, K. D.</creatorcontrib><creatorcontrib>Al-Durgham, K.</creatorcontrib><creatorcontrib>Kuntze, G.</creatorcontrib><creatorcontrib>Sharma, G.</creatorcontrib><creatorcontrib>Ronsky, J.</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chow, J. C. K.</au><au>Lichti, D. D.</au><au>Ang, K. D.</au><au>Al-Durgham, K.</au><au>Kuntze, G.</au><au>Sharma, G.</au><au>Ronsky, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2018-09-26</date><risdate>2018</risdate><volume>XLII-1</volume><spage>101</spage><epage>106</epage><pages>101-106</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and quantitative analysis of static and dynamic X-ray images, the data should be free of systematic biases. Besides precise fabrication of hardware, software-based calibration solutions are commonly used for modelling the distortions. In this primary research study, a robust photogrammetric bundle adjustment was used to model the projective geometry of two fluoroscopic X-ray imaging systems. However, instead of relying on an expert photogrammetrist’s knowledge and judgement to decide on a parametric model for describing the systematic errors, a self-tuning data-driven approach is used to model the complex non-linear distortion profile of the sensors. Quality control from the experiment showed that 0.06 mm to 0.09 mm 3D reconstruction accuracy was achievable post-calibration using merely 15 X-ray images. As part of the bundle adjustment, the location of the virtual fluoroscopic system relative to the target field can also be spatially resected with an RMSE between 3.10 mm and 3.31 mm.</abstract><pub>Copernicus Publications</pub><doi>10.5194/isprs-archives-XLII-1-101-2018</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-9034 |
ispartof | International archives of the photogrammetry, remote sensing and spatial information sciences., 2018-09, Vol.XLII-1, p.101-106 |
issn | 2194-9034 1682-1750 2194-9034 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e5184ad8f40e41afa4a3ca765ecda969 |
source | Publicly Available Content Database; EZB Electronic Journals Library |
title | MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODELLING%20ERRORS%20IN%20X-RAY%20FLUOROSCOPIC%20IMAGING%20SYSTEMS%20USING%20PHOTOGRAMMETRIC%20BUNDLE%20ADJUSTMENT%20WITH%20A%20DATA-DRIVEN%20SELF-CALIBRATION%20APPROACH&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Chow,%20J.%20C.%20K.&rft.date=2018-09-26&rft.volume=XLII-1&rft.spage=101&rft.epage=106&rft.pages=101-106&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLII-1-101-2018&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e5184ad8f40e41afa4a3ca765ecda969%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c191t-96eb97a58a8445be651c350c0d089b75271a00f2c775da48ddbe07667f601c4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |