Loading…

MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH

X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and quantitative analysis of static and dy...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2018-09, Vol.XLII-1, p.101-106
Main Authors: Chow, J. C. K., Lichti, D. D., Ang, K. D., Al-Durgham, K., Kuntze, G., Sharma, G., Ronsky, J.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 106
container_issue
container_start_page 101
container_title International archives of the photogrammetry, remote sensing and spatial information sciences.
container_volume XLII-1
creator Chow, J. C. K.
Lichti, D. D.
Ang, K. D.
Al-Durgham, K.
Kuntze, G.
Sharma, G.
Ronsky, J.
description X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and quantitative analysis of static and dynamic X-ray images, the data should be free of systematic biases. Besides precise fabrication of hardware, software-based calibration solutions are commonly used for modelling the distortions. In this primary research study, a robust photogrammetric bundle adjustment was used to model the projective geometry of two fluoroscopic X-ray imaging systems. However, instead of relying on an expert photogrammetrist’s knowledge and judgement to decide on a parametric model for describing the systematic errors, a self-tuning data-driven approach is used to model the complex non-linear distortion profile of the sensors. Quality control from the experiment showed that 0.06 mm to 0.09 mm 3D reconstruction accuracy was achievable post-calibration using merely 15 X-ray images. As part of the bundle adjustment, the location of the virtual fluoroscopic system relative to the target field can also be spatially resected with an RMSE between 3.10 mm and 3.31 mm.
doi_str_mv 10.5194/isprs-archives-XLII-1-101-2018
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e5184ad8f40e41afa4a3ca765ecda969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e5184ad8f40e41afa4a3ca765ecda969</doaj_id><sourcerecordid>oai_doaj_org_article_e5184ad8f40e41afa4a3ca765ecda969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-96eb97a58a8445be651c350c0d089b75271a00f2c775da48ddbe07667f601c4c3</originalsourceid><addsrcrecordid>eNpNkc1O3DAURqMKpCLgHbzqzmBPbCfZVDKJZ8ZVEo8cp4WV5XEcCAINSkZIfYa-dBOgFav7992zOVH0DaMrijNyPUwv4wTd6B-G1zDB21JKiCFGGK4QTr9EZ6s5BTMUk5NP_dfocpoeEUKYMEYRPYv-VKoQZSnrDRBaK90AWYNbqPkdWJet0qrJ1U7mQFZ8s4Sau8aIqgFts0y7rTJqo3lVCaPn1E1bF6UAvPjRNqYStQG_pNkCDgpuOCy0_Clq0IhyDXNeyhvNjVQ14LudVjzfXkSnvXuawuVHPY_atTD5FpZqI-cH6HGGjzBjYZ8ljqYuJYTuA6PYxxR51KE02yd0lWCHUL_ySUI7R9Ku2weUMJb0DGFPfHweyXdud3CP9mUcnt342x7cYN8Wh_HeuvE4-KdgA8UpcV3aExQIdr0jLvYuYTT4zmUsm1nf31l-PEzTGPr_PIzsYsq-mbL_TNnFlMXzFdvFVPwX4SeCtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Chow, J. C. K. ; Lichti, D. D. ; Ang, K. D. ; Al-Durgham, K. ; Kuntze, G. ; Sharma, G. ; Ronsky, J.</creator><creatorcontrib>Chow, J. C. K. ; Lichti, D. D. ; Ang, K. D. ; Al-Durgham, K. ; Kuntze, G. ; Sharma, G. ; Ronsky, J.</creatorcontrib><description>X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and quantitative analysis of static and dynamic X-ray images, the data should be free of systematic biases. Besides precise fabrication of hardware, software-based calibration solutions are commonly used for modelling the distortions. In this primary research study, a robust photogrammetric bundle adjustment was used to model the projective geometry of two fluoroscopic X-ray imaging systems. However, instead of relying on an expert photogrammetrist’s knowledge and judgement to decide on a parametric model for describing the systematic errors, a self-tuning data-driven approach is used to model the complex non-linear distortion profile of the sensors. Quality control from the experiment showed that 0.06 mm to 0.09 mm 3D reconstruction accuracy was achievable post-calibration using merely 15 X-ray images. As part of the bundle adjustment, the location of the virtual fluoroscopic system relative to the target field can also be spatially resected with an RMSE between 3.10 mm and 3.31 mm.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLII-1-101-2018</identifier><language>eng</language><publisher>Copernicus Publications</publisher><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2018-09, Vol.XLII-1, p.101-106</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chow, J. C. K.</creatorcontrib><creatorcontrib>Lichti, D. D.</creatorcontrib><creatorcontrib>Ang, K. D.</creatorcontrib><creatorcontrib>Al-Durgham, K.</creatorcontrib><creatorcontrib>Kuntze, G.</creatorcontrib><creatorcontrib>Sharma, G.</creatorcontrib><creatorcontrib>Ronsky, J.</creatorcontrib><title>MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and quantitative analysis of static and dynamic X-ray images, the data should be free of systematic biases. Besides precise fabrication of hardware, software-based calibration solutions are commonly used for modelling the distortions. In this primary research study, a robust photogrammetric bundle adjustment was used to model the projective geometry of two fluoroscopic X-ray imaging systems. However, instead of relying on an expert photogrammetrist’s knowledge and judgement to decide on a parametric model for describing the systematic errors, a self-tuning data-driven approach is used to model the complex non-linear distortion profile of the sensors. Quality control from the experiment showed that 0.06 mm to 0.09 mm 3D reconstruction accuracy was achievable post-calibration using merely 15 X-ray images. As part of the bundle adjustment, the location of the virtual fluoroscopic system relative to the target field can also be spatially resected with an RMSE between 3.10 mm and 3.31 mm.</description><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkc1O3DAURqMKpCLgHbzqzmBPbCfZVDKJZ8ZVEo8cp4WV5XEcCAINSkZIfYa-dBOgFav7992zOVH0DaMrijNyPUwv4wTd6B-G1zDB21JKiCFGGK4QTr9EZ6s5BTMUk5NP_dfocpoeEUKYMEYRPYv-VKoQZSnrDRBaK90AWYNbqPkdWJet0qrJ1U7mQFZ8s4Sau8aIqgFts0y7rTJqo3lVCaPn1E1bF6UAvPjRNqYStQG_pNkCDgpuOCy0_Clq0IhyDXNeyhvNjVQ14LudVjzfXkSnvXuawuVHPY_atTD5FpZqI-cH6HGGjzBjYZ8ljqYuJYTuA6PYxxR51KE02yd0lWCHUL_ySUI7R9Ku2weUMJb0DGFPfHweyXdud3CP9mUcnt342x7cYN8Wh_HeuvE4-KdgA8UpcV3aExQIdr0jLvYuYTT4zmUsm1nf31l-PEzTGPr_PIzsYsq-mbL_TNnFlMXzFdvFVPwX4SeCtw</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Chow, J. C. K.</creator><creator>Lichti, D. D.</creator><creator>Ang, K. D.</creator><creator>Al-Durgham, K.</creator><creator>Kuntze, G.</creator><creator>Sharma, G.</creator><creator>Ronsky, J.</creator><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20180926</creationdate><title>MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH</title><author>Chow, J. C. K. ; Lichti, D. D. ; Ang, K. D. ; Al-Durgham, K. ; Kuntze, G. ; Sharma, G. ; Ronsky, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-96eb97a58a8445be651c350c0d089b75271a00f2c775da48ddbe07667f601c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chow, J. C. K.</creatorcontrib><creatorcontrib>Lichti, D. D.</creatorcontrib><creatorcontrib>Ang, K. D.</creatorcontrib><creatorcontrib>Al-Durgham, K.</creatorcontrib><creatorcontrib>Kuntze, G.</creatorcontrib><creatorcontrib>Sharma, G.</creatorcontrib><creatorcontrib>Ronsky, J.</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chow, J. C. K.</au><au>Lichti, D. D.</au><au>Ang, K. D.</au><au>Al-Durgham, K.</au><au>Kuntze, G.</au><au>Sharma, G.</au><au>Ronsky, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2018-09-26</date><risdate>2018</risdate><volume>XLII-1</volume><spage>101</spage><epage>106</epage><pages>101-106</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and quantitative analysis of static and dynamic X-ray images, the data should be free of systematic biases. Besides precise fabrication of hardware, software-based calibration solutions are commonly used for modelling the distortions. In this primary research study, a robust photogrammetric bundle adjustment was used to model the projective geometry of two fluoroscopic X-ray imaging systems. However, instead of relying on an expert photogrammetrist’s knowledge and judgement to decide on a parametric model for describing the systematic errors, a self-tuning data-driven approach is used to model the complex non-linear distortion profile of the sensors. Quality control from the experiment showed that 0.06 mm to 0.09 mm 3D reconstruction accuracy was achievable post-calibration using merely 15 X-ray images. As part of the bundle adjustment, the location of the virtual fluoroscopic system relative to the target field can also be spatially resected with an RMSE between 3.10 mm and 3.31 mm.</abstract><pub>Copernicus Publications</pub><doi>10.5194/isprs-archives-XLII-1-101-2018</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-9034
ispartof International archives of the photogrammetry, remote sensing and spatial information sciences., 2018-09, Vol.XLII-1, p.101-106
issn 2194-9034
1682-1750
2194-9034
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e5184ad8f40e41afa4a3ca765ecda969
source Publicly Available Content Database; EZB Electronic Journals Library
title MODELLING ERRORS IN X-RAY FLUOROSCOPIC IMAGING SYSTEMS USING PHOTOGRAMMETRIC BUNDLE ADJUSTMENT WITH A DATA-DRIVEN SELF-CALIBRATION APPROACH
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODELLING%20ERRORS%20IN%20X-RAY%20FLUOROSCOPIC%20IMAGING%20SYSTEMS%20USING%20PHOTOGRAMMETRIC%20BUNDLE%20ADJUSTMENT%20WITH%20A%20DATA-DRIVEN%20SELF-CALIBRATION%20APPROACH&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Chow,%20J.%20C.%20K.&rft.date=2018-09-26&rft.volume=XLII-1&rft.spage=101&rft.epage=106&rft.pages=101-106&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLII-1-101-2018&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e5184ad8f40e41afa4a3ca765ecda969%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c191t-96eb97a58a8445be651c350c0d089b75271a00f2c775da48ddbe07667f601c4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true