Loading…

Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration

In most cancers, tumor hypoxia downregulates the expression of C‐C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung‐adenocarcinoma human samples f...

Full description

Saved in:
Bibliographic Details
Published in:Molecular oncology 2024-05, Vol.18 (5), p.1278-1300
Main Authors: Arora, Leena, Patra, Debarun, Roy, Soumyajit, Nanda, Sidhanta, Singh, Navneet, Verma, Anita K., Chakraborti, Anuradha, Dasgupta, Suman, Pal, Durba
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33
cites cdi_FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33
container_end_page 1300
container_issue 5
container_start_page 1278
container_title Molecular oncology
container_volume 18
creator Arora, Leena
Patra, Debarun
Roy, Soumyajit
Nanda, Sidhanta
Singh, Navneet
Verma, Anita K.
Chakraborti, Anuradha
Dasgupta, Suman
Pal, Durba
description In most cancers, tumor hypoxia downregulates the expression of C‐C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung‐adenocarcinoma human samples for hypoxia‐inducible factor 1‐alpha (HIF‐1A), microRNA‐210‐3p (mir‐210‐3p), and CCL2 levels. Mechanistic studies were performed on lung adenocarcinoma cell lines and 3D tumor spheroids to understand the role of hypoxia‐induced miR‐210‐3p in the regulation of CCL2 expression and macrophage polarization. HIF‐1Α stabilization increases miR‐210‐3p levels in lung adenocarcinoma and impairs monocyte infiltration by inhibiting CCL2 expression. Mechanistically, miR‐210‐3p directly binds to the 3′untranslated region (UTR) of CCL2 mRNA and silences it. Suppressing miR‐210‐3p substantially downregulates the effect of hypoxia on CCL2 expression. Monocyte migration is significantly hampered in miR‐210‐3p mimic‐transfected HIF‐1A silenced cancer cells. In contrast, inhibition of miR‐210‐3p in HIF‐1A‐overexpressed cells markedly restored monocyte migration, highlighting a direct link between the miR‐210‐3p level and tumor monocyte burden. Moreover, miR‐210‐3p inhibition in 3D tumor spheroids promotes monocyte recruitment and skewing towards an antitumor M1 phenotype. Anti‐hsa‐miR‐210‐3p‐locked nucleic acid (LNA) delivery in a lung tumor xenograft zebrafish model caused tumor regression, suggesting that miR‐210‐3p could be a promising target for immunomodulatory therapeutic strategies against lung adenocarcinoma. Hypoxia‐associated stabilization of HIF‐1A markedly enhanced miR‐210‐3p expression, which directly targets CCL2 downregulation in lung adenocarcinoma, resulting in impaired monocyte infiltration and the stimulation of macrophage TAM polarization. Inhibition of miR‐210‐3p promoted monocyte recruitment and skewed towards an M1 phenotype in 3D tumor spheroids and a tumor xenograft model. Targeting miR‐210‐3p could be an effective therapeutic strategy for the management of lung adenocarcinoma.
doi_str_mv 10.1002/1878-0261.13260
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e58c5ebc3fec48f9932ddecd102c1a0c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A798121268</galeid><doaj_id>oai_doaj_org_article_e58c5ebc3fec48f9932ddecd102c1a0c</doaj_id><sourcerecordid>A798121268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEoqVw5oYiceGyW9uJ_51QtQJaaVElBGfLsSeLq8QOdtJ2bzwC4hF5EpxuWViEhCI59uSb33gmX1E8x2iJESKnWHCxQIThJa4IQw-K433kYd5TXi-4kPioeJLSFUKUSSYfF0cVZVRgTI6L7-fbIdw6_ePrN-ftZMCWvfuQTwSjvFZDCbdDhJRc8KXzZTf5Takt-GB0NM6HXpdDGMGPTo-QynHqQywtXEMXhj6Hy2ZbRthMnR5dTl2t1qTswc7qXCpkznaETG5dN8asCf5p8ajVXYJn9--T4tPbNx9X54v15buL1dl6YRgiaMHqhjWISyoFozWXlhLW2JZwLGtsUSvahltixby3nEjbVKLlsgXRGM5MVZ0UFzuuDfpKDdH1Om5V0E7dBULcKB1HZzpQQIWh0JiqBVOLVsqKWAvGYkQM1shk1usda5ia3J3JjUfdHUAPv3j3WW3CtcIYcY5QnQmv7gkxfJkgjap3yUDXaQ9hSoowXlHJazRf_OVf0qswRZ9npSpEMWcUY_xbtdG5gzzgkAubGarOuBSYYMJEVi3_ocqPhd6Z4CH_FzhMON0lmBhSitDum8RIzZ5UswPV7EB158mc8eLP2ez1v0yYBWwnuMm1tv_jqfeXa7Ij_wQoy_Ac</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051765111</pqid></control><display><type>article</type><title>Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration</title><source>Open Access: PubMed Central</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Arora, Leena ; Patra, Debarun ; Roy, Soumyajit ; Nanda, Sidhanta ; Singh, Navneet ; Verma, Anita K. ; Chakraborti, Anuradha ; Dasgupta, Suman ; Pal, Durba</creator><creatorcontrib>Arora, Leena ; Patra, Debarun ; Roy, Soumyajit ; Nanda, Sidhanta ; Singh, Navneet ; Verma, Anita K. ; Chakraborti, Anuradha ; Dasgupta, Suman ; Pal, Durba</creatorcontrib><description>In most cancers, tumor hypoxia downregulates the expression of C‐C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung‐adenocarcinoma human samples for hypoxia‐inducible factor 1‐alpha (HIF‐1A), microRNA‐210‐3p (mir‐210‐3p), and CCL2 levels. Mechanistic studies were performed on lung adenocarcinoma cell lines and 3D tumor spheroids to understand the role of hypoxia‐induced miR‐210‐3p in the regulation of CCL2 expression and macrophage polarization. HIF‐1Α stabilization increases miR‐210‐3p levels in lung adenocarcinoma and impairs monocyte infiltration by inhibiting CCL2 expression. Mechanistically, miR‐210‐3p directly binds to the 3′untranslated region (UTR) of CCL2 mRNA and silences it. Suppressing miR‐210‐3p substantially downregulates the effect of hypoxia on CCL2 expression. Monocyte migration is significantly hampered in miR‐210‐3p mimic‐transfected HIF‐1A silenced cancer cells. In contrast, inhibition of miR‐210‐3p in HIF‐1A‐overexpressed cells markedly restored monocyte migration, highlighting a direct link between the miR‐210‐3p level and tumor monocyte burden. Moreover, miR‐210‐3p inhibition in 3D tumor spheroids promotes monocyte recruitment and skewing towards an antitumor M1 phenotype. Anti‐hsa‐miR‐210‐3p‐locked nucleic acid (LNA) delivery in a lung tumor xenograft zebrafish model caused tumor regression, suggesting that miR‐210‐3p could be a promising target for immunomodulatory therapeutic strategies against lung adenocarcinoma. Hypoxia‐associated stabilization of HIF‐1A markedly enhanced miR‐210‐3p expression, which directly targets CCL2 downregulation in lung adenocarcinoma, resulting in impaired monocyte infiltration and the stimulation of macrophage TAM polarization. Inhibition of miR‐210‐3p promoted monocyte recruitment and skewed towards an M1 phenotype in 3D tumor spheroids and a tumor xenograft model. Targeting miR‐210‐3p could be an effective therapeutic strategy for the management of lung adenocarcinoma.</description><identifier>ISSN: 1574-7891</identifier><identifier>EISSN: 1878-0261</identifier><identifier>DOI: 10.1002/1878-0261.13260</identifier><identifier>PMID: 35658112</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>3' Untranslated regions ; Adenocarcinoma ; Adenocarcinoma of Lung - genetics ; Adenocarcinoma of Lung - metabolism ; Adenocarcinoma of Lung - pathology ; Animals ; Antibodies ; CCL2 ; Cell culture ; Cell Hypoxia - genetics ; Cell Line, Tumor ; Chemokine CCL2 - genetics ; Chemokine CCL2 - metabolism ; Chemokines ; Cobalt ; Deoxyribonucleic acid ; Development and progression ; DNA ; Down-regulation ; Gene expression ; Gene Expression Regulation, Neoplastic ; Health aspects ; HIF‐1Α ; Humans ; Hypoxia ; Hypoxia-inducible factor 1 ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-inducible factor 1a ; Immunomodulation ; Infiltration ; Leukocyte migration ; Ligands ; LUAD ; Lung cancer ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Lungs ; Macrophages ; Metastases ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; miR‐210‐3p ; Molecular modelling ; Monocyte chemoattractant protein 1 ; monocyte infiltration ; Monocytes ; Monocytes - metabolism ; Monocytes - pathology ; mRNA ; Olefins ; Phenotypes ; Proteins ; Scientific equipment and supplies industry ; Spheroids ; Transcription factors ; Tumor cell lines ; Tumors ; Zebrafish</subject><ispartof>Molecular oncology, 2024-05, Vol.18 (5), p.1278-1300</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Federation of European Biochemical Societies.</rights><rights>2022 The Authors. Molecular Oncology published by John Wiley &amp; Sons Ltd on behalf of Federation of European Biochemical Societies.</rights><rights>COPYRIGHT 2024 John Wiley &amp; Sons, Inc.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33</citedby><cites>FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33</cites><orcidid>0000-0003-2599-2299 ; 0000-0001-8306-7558 ; 0000-0002-1577-8195 ; 0000-0001-7672-3529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3051765111/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3051765111?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35658112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arora, Leena</creatorcontrib><creatorcontrib>Patra, Debarun</creatorcontrib><creatorcontrib>Roy, Soumyajit</creatorcontrib><creatorcontrib>Nanda, Sidhanta</creatorcontrib><creatorcontrib>Singh, Navneet</creatorcontrib><creatorcontrib>Verma, Anita K.</creatorcontrib><creatorcontrib>Chakraborti, Anuradha</creatorcontrib><creatorcontrib>Dasgupta, Suman</creatorcontrib><creatorcontrib>Pal, Durba</creatorcontrib><title>Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration</title><title>Molecular oncology</title><addtitle>Mol Oncol</addtitle><description>In most cancers, tumor hypoxia downregulates the expression of C‐C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung‐adenocarcinoma human samples for hypoxia‐inducible factor 1‐alpha (HIF‐1A), microRNA‐210‐3p (mir‐210‐3p), and CCL2 levels. Mechanistic studies were performed on lung adenocarcinoma cell lines and 3D tumor spheroids to understand the role of hypoxia‐induced miR‐210‐3p in the regulation of CCL2 expression and macrophage polarization. HIF‐1Α stabilization increases miR‐210‐3p levels in lung adenocarcinoma and impairs monocyte infiltration by inhibiting CCL2 expression. Mechanistically, miR‐210‐3p directly binds to the 3′untranslated region (UTR) of CCL2 mRNA and silences it. Suppressing miR‐210‐3p substantially downregulates the effect of hypoxia on CCL2 expression. Monocyte migration is significantly hampered in miR‐210‐3p mimic‐transfected HIF‐1A silenced cancer cells. In contrast, inhibition of miR‐210‐3p in HIF‐1A‐overexpressed cells markedly restored monocyte migration, highlighting a direct link between the miR‐210‐3p level and tumor monocyte burden. Moreover, miR‐210‐3p inhibition in 3D tumor spheroids promotes monocyte recruitment and skewing towards an antitumor M1 phenotype. Anti‐hsa‐miR‐210‐3p‐locked nucleic acid (LNA) delivery in a lung tumor xenograft zebrafish model caused tumor regression, suggesting that miR‐210‐3p could be a promising target for immunomodulatory therapeutic strategies against lung adenocarcinoma. Hypoxia‐associated stabilization of HIF‐1A markedly enhanced miR‐210‐3p expression, which directly targets CCL2 downregulation in lung adenocarcinoma, resulting in impaired monocyte infiltration and the stimulation of macrophage TAM polarization. Inhibition of miR‐210‐3p promoted monocyte recruitment and skewed towards an M1 phenotype in 3D tumor spheroids and a tumor xenograft model. Targeting miR‐210‐3p could be an effective therapeutic strategy for the management of lung adenocarcinoma.</description><subject>3' Untranslated regions</subject><subject>Adenocarcinoma</subject><subject>Adenocarcinoma of Lung - genetics</subject><subject>Adenocarcinoma of Lung - metabolism</subject><subject>Adenocarcinoma of Lung - pathology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>CCL2</subject><subject>Cell culture</subject><subject>Cell Hypoxia - genetics</subject><subject>Cell Line, Tumor</subject><subject>Chemokine CCL2 - genetics</subject><subject>Chemokine CCL2 - metabolism</subject><subject>Chemokines</subject><subject>Cobalt</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>DNA</subject><subject>Down-regulation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Health aspects</subject><subject>HIF‐1Α</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Immunomodulation</subject><subject>Infiltration</subject><subject>Leukocyte migration</subject><subject>Ligands</subject><subject>LUAD</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Lungs</subject><subject>Macrophages</subject><subject>Metastases</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>miR‐210‐3p</subject><subject>Molecular modelling</subject><subject>Monocyte chemoattractant protein 1</subject><subject>monocyte infiltration</subject><subject>Monocytes</subject><subject>Monocytes - metabolism</subject><subject>Monocytes - pathology</subject><subject>mRNA</subject><subject>Olefins</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Scientific equipment and supplies industry</subject><subject>Spheroids</subject><subject>Transcription factors</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><subject>Zebrafish</subject><issn>1574-7891</issn><issn>1878-0261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks9u1DAQxiMEoqVw5oYiceGyW9uJ_51QtQJaaVElBGfLsSeLq8QOdtJ2bzwC4hF5EpxuWViEhCI59uSb33gmX1E8x2iJESKnWHCxQIThJa4IQw-K433kYd5TXi-4kPioeJLSFUKUSSYfF0cVZVRgTI6L7-fbIdw6_ePrN-ftZMCWvfuQTwSjvFZDCbdDhJRc8KXzZTf5Takt-GB0NM6HXpdDGMGPTo-QynHqQywtXEMXhj6Hy2ZbRthMnR5dTl2t1qTswc7qXCpkznaETG5dN8asCf5p8ajVXYJn9--T4tPbNx9X54v15buL1dl6YRgiaMHqhjWISyoFozWXlhLW2JZwLGtsUSvahltixby3nEjbVKLlsgXRGM5MVZ0UFzuuDfpKDdH1Om5V0E7dBULcKB1HZzpQQIWh0JiqBVOLVsqKWAvGYkQM1shk1usda5ia3J3JjUfdHUAPv3j3WW3CtcIYcY5QnQmv7gkxfJkgjap3yUDXaQ9hSoowXlHJazRf_OVf0qswRZ9npSpEMWcUY_xbtdG5gzzgkAubGarOuBSYYMJEVi3_ocqPhd6Z4CH_FzhMON0lmBhSitDum8RIzZ5UswPV7EB158mc8eLP2ez1v0yYBWwnuMm1tv_jqfeXa7Ij_wQoy_Ac</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Arora, Leena</creator><creator>Patra, Debarun</creator><creator>Roy, Soumyajit</creator><creator>Nanda, Sidhanta</creator><creator>Singh, Navneet</creator><creator>Verma, Anita K.</creator><creator>Chakraborti, Anuradha</creator><creator>Dasgupta, Suman</creator><creator>Pal, Durba</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2599-2299</orcidid><orcidid>https://orcid.org/0000-0001-8306-7558</orcidid><orcidid>https://orcid.org/0000-0002-1577-8195</orcidid><orcidid>https://orcid.org/0000-0001-7672-3529</orcidid></search><sort><creationdate>202405</creationdate><title>Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration</title><author>Arora, Leena ; Patra, Debarun ; Roy, Soumyajit ; Nanda, Sidhanta ; Singh, Navneet ; Verma, Anita K. ; Chakraborti, Anuradha ; Dasgupta, Suman ; Pal, Durba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3' Untranslated regions</topic><topic>Adenocarcinoma</topic><topic>Adenocarcinoma of Lung - genetics</topic><topic>Adenocarcinoma of Lung - metabolism</topic><topic>Adenocarcinoma of Lung - pathology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>CCL2</topic><topic>Cell culture</topic><topic>Cell Hypoxia - genetics</topic><topic>Cell Line, Tumor</topic><topic>Chemokine CCL2 - genetics</topic><topic>Chemokine CCL2 - metabolism</topic><topic>Chemokines</topic><topic>Cobalt</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>DNA</topic><topic>Down-regulation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Health aspects</topic><topic>HIF‐1Α</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Immunomodulation</topic><topic>Infiltration</topic><topic>Leukocyte migration</topic><topic>Ligands</topic><topic>LUAD</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Lungs</topic><topic>Macrophages</topic><topic>Metastases</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>miR‐210‐3p</topic><topic>Molecular modelling</topic><topic>Monocyte chemoattractant protein 1</topic><topic>monocyte infiltration</topic><topic>Monocytes</topic><topic>Monocytes - metabolism</topic><topic>Monocytes - pathology</topic><topic>mRNA</topic><topic>Olefins</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Scientific equipment and supplies industry</topic><topic>Spheroids</topic><topic>Transcription factors</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arora, Leena</creatorcontrib><creatorcontrib>Patra, Debarun</creatorcontrib><creatorcontrib>Roy, Soumyajit</creatorcontrib><creatorcontrib>Nanda, Sidhanta</creatorcontrib><creatorcontrib>Singh, Navneet</creatorcontrib><creatorcontrib>Verma, Anita K.</creatorcontrib><creatorcontrib>Chakraborti, Anuradha</creatorcontrib><creatorcontrib>Dasgupta, Suman</creatorcontrib><creatorcontrib>Pal, Durba</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arora, Leena</au><au>Patra, Debarun</au><au>Roy, Soumyajit</au><au>Nanda, Sidhanta</au><au>Singh, Navneet</au><au>Verma, Anita K.</au><au>Chakraborti, Anuradha</au><au>Dasgupta, Suman</au><au>Pal, Durba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration</atitle><jtitle>Molecular oncology</jtitle><addtitle>Mol Oncol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><spage>1278</spage><epage>1300</epage><pages>1278-1300</pages><issn>1574-7891</issn><eissn>1878-0261</eissn><abstract>In most cancers, tumor hypoxia downregulates the expression of C‐C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung‐adenocarcinoma human samples for hypoxia‐inducible factor 1‐alpha (HIF‐1A), microRNA‐210‐3p (mir‐210‐3p), and CCL2 levels. Mechanistic studies were performed on lung adenocarcinoma cell lines and 3D tumor spheroids to understand the role of hypoxia‐induced miR‐210‐3p in the regulation of CCL2 expression and macrophage polarization. HIF‐1Α stabilization increases miR‐210‐3p levels in lung adenocarcinoma and impairs monocyte infiltration by inhibiting CCL2 expression. Mechanistically, miR‐210‐3p directly binds to the 3′untranslated region (UTR) of CCL2 mRNA and silences it. Suppressing miR‐210‐3p substantially downregulates the effect of hypoxia on CCL2 expression. Monocyte migration is significantly hampered in miR‐210‐3p mimic‐transfected HIF‐1A silenced cancer cells. In contrast, inhibition of miR‐210‐3p in HIF‐1A‐overexpressed cells markedly restored monocyte migration, highlighting a direct link between the miR‐210‐3p level and tumor monocyte burden. Moreover, miR‐210‐3p inhibition in 3D tumor spheroids promotes monocyte recruitment and skewing towards an antitumor M1 phenotype. Anti‐hsa‐miR‐210‐3p‐locked nucleic acid (LNA) delivery in a lung tumor xenograft zebrafish model caused tumor regression, suggesting that miR‐210‐3p could be a promising target for immunomodulatory therapeutic strategies against lung adenocarcinoma. Hypoxia‐associated stabilization of HIF‐1A markedly enhanced miR‐210‐3p expression, which directly targets CCL2 downregulation in lung adenocarcinoma, resulting in impaired monocyte infiltration and the stimulation of macrophage TAM polarization. Inhibition of miR‐210‐3p promoted monocyte recruitment and skewed towards an M1 phenotype in 3D tumor spheroids and a tumor xenograft model. Targeting miR‐210‐3p could be an effective therapeutic strategy for the management of lung adenocarcinoma.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35658112</pmid><doi>10.1002/1878-0261.13260</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2599-2299</orcidid><orcidid>https://orcid.org/0000-0001-8306-7558</orcidid><orcidid>https://orcid.org/0000-0002-1577-8195</orcidid><orcidid>https://orcid.org/0000-0001-7672-3529</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-7891
ispartof Molecular oncology, 2024-05, Vol.18 (5), p.1278-1300
issn 1574-7891
1878-0261
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e58c5ebc3fec48f9932ddecd102c1a0c
source Open Access: PubMed Central; Wiley Online Library Open Access; Publicly Available Content Database
subjects 3' Untranslated regions
Adenocarcinoma
Adenocarcinoma of Lung - genetics
Adenocarcinoma of Lung - metabolism
Adenocarcinoma of Lung - pathology
Animals
Antibodies
CCL2
Cell culture
Cell Hypoxia - genetics
Cell Line, Tumor
Chemokine CCL2 - genetics
Chemokine CCL2 - metabolism
Chemokines
Cobalt
Deoxyribonucleic acid
Development and progression
DNA
Down-regulation
Gene expression
Gene Expression Regulation, Neoplastic
Health aspects
HIF‐1Α
Humans
Hypoxia
Hypoxia-inducible factor 1
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Hypoxia-inducible factor 1a
Immunomodulation
Infiltration
Leukocyte migration
Ligands
LUAD
Lung cancer
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Lungs
Macrophages
Metastases
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
miR‐210‐3p
Molecular modelling
Monocyte chemoattractant protein 1
monocyte infiltration
Monocytes
Monocytes - metabolism
Monocytes - pathology
mRNA
Olefins
Phenotypes
Proteins
Scientific equipment and supplies industry
Spheroids
Transcription factors
Tumor cell lines
Tumors
Zebrafish
title Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%E2%80%90induced%20miR%E2%80%90210%E2%80%903p%20expression%20in%20lung%20adenocarcinoma%20potentiates%20tumor%20development%20by%20regulating%20CCL2%20mediated%20monocyte%20infiltration&rft.jtitle=Molecular%20oncology&rft.au=Arora,%20Leena&rft.date=2024-05&rft.volume=18&rft.issue=5&rft.spage=1278&rft.epage=1300&rft.pages=1278-1300&rft.issn=1574-7891&rft.eissn=1878-0261&rft_id=info:doi/10.1002/1878-0261.13260&rft_dat=%3Cgale_doaj_%3EA798121268%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051765111&rft_id=info:pmid/35658112&rft_galeid=A798121268&rfr_iscdi=true