Loading…
Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration
In most cancers, tumor hypoxia downregulates the expression of C‐C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung‐adenocarcinoma human samples f...
Saved in:
Published in: | Molecular oncology 2024-05, Vol.18 (5), p.1278-1300 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33 |
container_end_page | 1300 |
container_issue | 5 |
container_start_page | 1278 |
container_title | Molecular oncology |
container_volume | 18 |
creator | Arora, Leena Patra, Debarun Roy, Soumyajit Nanda, Sidhanta Singh, Navneet Verma, Anita K. Chakraborti, Anuradha Dasgupta, Suman Pal, Durba |
description | In most cancers, tumor hypoxia downregulates the expression of C‐C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung‐adenocarcinoma human samples for hypoxia‐inducible factor 1‐alpha (HIF‐1A), microRNA‐210‐3p (mir‐210‐3p), and CCL2 levels. Mechanistic studies were performed on lung adenocarcinoma cell lines and 3D tumor spheroids to understand the role of hypoxia‐induced miR‐210‐3p in the regulation of CCL2 expression and macrophage polarization. HIF‐1Α stabilization increases miR‐210‐3p levels in lung adenocarcinoma and impairs monocyte infiltration by inhibiting CCL2 expression. Mechanistically, miR‐210‐3p directly binds to the 3′untranslated region (UTR) of CCL2 mRNA and silences it. Suppressing miR‐210‐3p substantially downregulates the effect of hypoxia on CCL2 expression. Monocyte migration is significantly hampered in miR‐210‐3p mimic‐transfected HIF‐1A silenced cancer cells. In contrast, inhibition of miR‐210‐3p in HIF‐1A‐overexpressed cells markedly restored monocyte migration, highlighting a direct link between the miR‐210‐3p level and tumor monocyte burden. Moreover, miR‐210‐3p inhibition in 3D tumor spheroids promotes monocyte recruitment and skewing towards an antitumor M1 phenotype. Anti‐hsa‐miR‐210‐3p‐locked nucleic acid (LNA) delivery in a lung tumor xenograft zebrafish model caused tumor regression, suggesting that miR‐210‐3p could be a promising target for immunomodulatory therapeutic strategies against lung adenocarcinoma.
Hypoxia‐associated stabilization of HIF‐1A markedly enhanced miR‐210‐3p expression, which directly targets CCL2 downregulation in lung adenocarcinoma, resulting in impaired monocyte infiltration and the stimulation of macrophage TAM polarization. Inhibition of miR‐210‐3p promoted monocyte recruitment and skewed towards an M1 phenotype in 3D tumor spheroids and a tumor xenograft model. Targeting miR‐210‐3p could be an effective therapeutic strategy for the management of lung adenocarcinoma. |
doi_str_mv | 10.1002/1878-0261.13260 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e58c5ebc3fec48f9932ddecd102c1a0c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A798121268</galeid><doaj_id>oai_doaj_org_article_e58c5ebc3fec48f9932ddecd102c1a0c</doaj_id><sourcerecordid>A798121268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEoqVw5oYiceGyW9uJ_51QtQJaaVElBGfLsSeLq8QOdtJ2bzwC4hF5EpxuWViEhCI59uSb33gmX1E8x2iJESKnWHCxQIThJa4IQw-K433kYd5TXi-4kPioeJLSFUKUSSYfF0cVZVRgTI6L7-fbIdw6_ePrN-ftZMCWvfuQTwSjvFZDCbdDhJRc8KXzZTf5Takt-GB0NM6HXpdDGMGPTo-QynHqQywtXEMXhj6Hy2ZbRthMnR5dTl2t1qTswc7qXCpkznaETG5dN8asCf5p8ajVXYJn9--T4tPbNx9X54v15buL1dl6YRgiaMHqhjWISyoFozWXlhLW2JZwLGtsUSvahltixby3nEjbVKLlsgXRGM5MVZ0UFzuuDfpKDdH1Om5V0E7dBULcKB1HZzpQQIWh0JiqBVOLVsqKWAvGYkQM1shk1usda5ia3J3JjUfdHUAPv3j3WW3CtcIYcY5QnQmv7gkxfJkgjap3yUDXaQ9hSoowXlHJazRf_OVf0qswRZ9npSpEMWcUY_xbtdG5gzzgkAubGarOuBSYYMJEVi3_ocqPhd6Z4CH_FzhMON0lmBhSitDum8RIzZ5UswPV7EB158mc8eLP2ez1v0yYBWwnuMm1tv_jqfeXa7Ij_wQoy_Ac</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051765111</pqid></control><display><type>article</type><title>Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration</title><source>Open Access: PubMed Central</source><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Arora, Leena ; Patra, Debarun ; Roy, Soumyajit ; Nanda, Sidhanta ; Singh, Navneet ; Verma, Anita K. ; Chakraborti, Anuradha ; Dasgupta, Suman ; Pal, Durba</creator><creatorcontrib>Arora, Leena ; Patra, Debarun ; Roy, Soumyajit ; Nanda, Sidhanta ; Singh, Navneet ; Verma, Anita K. ; Chakraborti, Anuradha ; Dasgupta, Suman ; Pal, Durba</creatorcontrib><description>In most cancers, tumor hypoxia downregulates the expression of C‐C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung‐adenocarcinoma human samples for hypoxia‐inducible factor 1‐alpha (HIF‐1A), microRNA‐210‐3p (mir‐210‐3p), and CCL2 levels. Mechanistic studies were performed on lung adenocarcinoma cell lines and 3D tumor spheroids to understand the role of hypoxia‐induced miR‐210‐3p in the regulation of CCL2 expression and macrophage polarization. HIF‐1Α stabilization increases miR‐210‐3p levels in lung adenocarcinoma and impairs monocyte infiltration by inhibiting CCL2 expression. Mechanistically, miR‐210‐3p directly binds to the 3′untranslated region (UTR) of CCL2 mRNA and silences it. Suppressing miR‐210‐3p substantially downregulates the effect of hypoxia on CCL2 expression. Monocyte migration is significantly hampered in miR‐210‐3p mimic‐transfected HIF‐1A silenced cancer cells. In contrast, inhibition of miR‐210‐3p in HIF‐1A‐overexpressed cells markedly restored monocyte migration, highlighting a direct link between the miR‐210‐3p level and tumor monocyte burden. Moreover, miR‐210‐3p inhibition in 3D tumor spheroids promotes monocyte recruitment and skewing towards an antitumor M1 phenotype. Anti‐hsa‐miR‐210‐3p‐locked nucleic acid (LNA) delivery in a lung tumor xenograft zebrafish model caused tumor regression, suggesting that miR‐210‐3p could be a promising target for immunomodulatory therapeutic strategies against lung adenocarcinoma.
Hypoxia‐associated stabilization of HIF‐1A markedly enhanced miR‐210‐3p expression, which directly targets CCL2 downregulation in lung adenocarcinoma, resulting in impaired monocyte infiltration and the stimulation of macrophage TAM polarization. Inhibition of miR‐210‐3p promoted monocyte recruitment and skewed towards an M1 phenotype in 3D tumor spheroids and a tumor xenograft model. Targeting miR‐210‐3p could be an effective therapeutic strategy for the management of lung adenocarcinoma.</description><identifier>ISSN: 1574-7891</identifier><identifier>EISSN: 1878-0261</identifier><identifier>DOI: 10.1002/1878-0261.13260</identifier><identifier>PMID: 35658112</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>3' Untranslated regions ; Adenocarcinoma ; Adenocarcinoma of Lung - genetics ; Adenocarcinoma of Lung - metabolism ; Adenocarcinoma of Lung - pathology ; Animals ; Antibodies ; CCL2 ; Cell culture ; Cell Hypoxia - genetics ; Cell Line, Tumor ; Chemokine CCL2 - genetics ; Chemokine CCL2 - metabolism ; Chemokines ; Cobalt ; Deoxyribonucleic acid ; Development and progression ; DNA ; Down-regulation ; Gene expression ; Gene Expression Regulation, Neoplastic ; Health aspects ; HIF‐1Α ; Humans ; Hypoxia ; Hypoxia-inducible factor 1 ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-inducible factor 1a ; Immunomodulation ; Infiltration ; Leukocyte migration ; Ligands ; LUAD ; Lung cancer ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Lungs ; Macrophages ; Metastases ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; miR‐210‐3p ; Molecular modelling ; Monocyte chemoattractant protein 1 ; monocyte infiltration ; Monocytes ; Monocytes - metabolism ; Monocytes - pathology ; mRNA ; Olefins ; Phenotypes ; Proteins ; Scientific equipment and supplies industry ; Spheroids ; Transcription factors ; Tumor cell lines ; Tumors ; Zebrafish</subject><ispartof>Molecular oncology, 2024-05, Vol.18 (5), p.1278-1300</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.</rights><rights>2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.</rights><rights>COPYRIGHT 2024 John Wiley & Sons, Inc.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33</citedby><cites>FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33</cites><orcidid>0000-0003-2599-2299 ; 0000-0001-8306-7558 ; 0000-0002-1577-8195 ; 0000-0001-7672-3529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3051765111/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3051765111?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35658112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arora, Leena</creatorcontrib><creatorcontrib>Patra, Debarun</creatorcontrib><creatorcontrib>Roy, Soumyajit</creatorcontrib><creatorcontrib>Nanda, Sidhanta</creatorcontrib><creatorcontrib>Singh, Navneet</creatorcontrib><creatorcontrib>Verma, Anita K.</creatorcontrib><creatorcontrib>Chakraborti, Anuradha</creatorcontrib><creatorcontrib>Dasgupta, Suman</creatorcontrib><creatorcontrib>Pal, Durba</creatorcontrib><title>Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration</title><title>Molecular oncology</title><addtitle>Mol Oncol</addtitle><description>In most cancers, tumor hypoxia downregulates the expression of C‐C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung‐adenocarcinoma human samples for hypoxia‐inducible factor 1‐alpha (HIF‐1A), microRNA‐210‐3p (mir‐210‐3p), and CCL2 levels. Mechanistic studies were performed on lung adenocarcinoma cell lines and 3D tumor spheroids to understand the role of hypoxia‐induced miR‐210‐3p in the regulation of CCL2 expression and macrophage polarization. HIF‐1Α stabilization increases miR‐210‐3p levels in lung adenocarcinoma and impairs monocyte infiltration by inhibiting CCL2 expression. Mechanistically, miR‐210‐3p directly binds to the 3′untranslated region (UTR) of CCL2 mRNA and silences it. Suppressing miR‐210‐3p substantially downregulates the effect of hypoxia on CCL2 expression. Monocyte migration is significantly hampered in miR‐210‐3p mimic‐transfected HIF‐1A silenced cancer cells. In contrast, inhibition of miR‐210‐3p in HIF‐1A‐overexpressed cells markedly restored monocyte migration, highlighting a direct link between the miR‐210‐3p level and tumor monocyte burden. Moreover, miR‐210‐3p inhibition in 3D tumor spheroids promotes monocyte recruitment and skewing towards an antitumor M1 phenotype. Anti‐hsa‐miR‐210‐3p‐locked nucleic acid (LNA) delivery in a lung tumor xenograft zebrafish model caused tumor regression, suggesting that miR‐210‐3p could be a promising target for immunomodulatory therapeutic strategies against lung adenocarcinoma.
Hypoxia‐associated stabilization of HIF‐1A markedly enhanced miR‐210‐3p expression, which directly targets CCL2 downregulation in lung adenocarcinoma, resulting in impaired monocyte infiltration and the stimulation of macrophage TAM polarization. Inhibition of miR‐210‐3p promoted monocyte recruitment and skewed towards an M1 phenotype in 3D tumor spheroids and a tumor xenograft model. Targeting miR‐210‐3p could be an effective therapeutic strategy for the management of lung adenocarcinoma.</description><subject>3' Untranslated regions</subject><subject>Adenocarcinoma</subject><subject>Adenocarcinoma of Lung - genetics</subject><subject>Adenocarcinoma of Lung - metabolism</subject><subject>Adenocarcinoma of Lung - pathology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>CCL2</subject><subject>Cell culture</subject><subject>Cell Hypoxia - genetics</subject><subject>Cell Line, Tumor</subject><subject>Chemokine CCL2 - genetics</subject><subject>Chemokine CCL2 - metabolism</subject><subject>Chemokines</subject><subject>Cobalt</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>DNA</subject><subject>Down-regulation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Health aspects</subject><subject>HIF‐1Α</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Immunomodulation</subject><subject>Infiltration</subject><subject>Leukocyte migration</subject><subject>Ligands</subject><subject>LUAD</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Lungs</subject><subject>Macrophages</subject><subject>Metastases</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>miR‐210‐3p</subject><subject>Molecular modelling</subject><subject>Monocyte chemoattractant protein 1</subject><subject>monocyte infiltration</subject><subject>Monocytes</subject><subject>Monocytes - metabolism</subject><subject>Monocytes - pathology</subject><subject>mRNA</subject><subject>Olefins</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Scientific equipment and supplies industry</subject><subject>Spheroids</subject><subject>Transcription factors</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><subject>Zebrafish</subject><issn>1574-7891</issn><issn>1878-0261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks9u1DAQxiMEoqVw5oYiceGyW9uJ_51QtQJaaVElBGfLsSeLq8QOdtJ2bzwC4hF5EpxuWViEhCI59uSb33gmX1E8x2iJESKnWHCxQIThJa4IQw-K433kYd5TXi-4kPioeJLSFUKUSSYfF0cVZVRgTI6L7-fbIdw6_ePrN-ftZMCWvfuQTwSjvFZDCbdDhJRc8KXzZTf5Takt-GB0NM6HXpdDGMGPTo-QynHqQywtXEMXhj6Hy2ZbRthMnR5dTl2t1qTswc7qXCpkznaETG5dN8asCf5p8ajVXYJn9--T4tPbNx9X54v15buL1dl6YRgiaMHqhjWISyoFozWXlhLW2JZwLGtsUSvahltixby3nEjbVKLlsgXRGM5MVZ0UFzuuDfpKDdH1Om5V0E7dBULcKB1HZzpQQIWh0JiqBVOLVsqKWAvGYkQM1shk1usda5ia3J3JjUfdHUAPv3j3WW3CtcIYcY5QnQmv7gkxfJkgjap3yUDXaQ9hSoowXlHJazRf_OVf0qswRZ9npSpEMWcUY_xbtdG5gzzgkAubGarOuBSYYMJEVi3_ocqPhd6Z4CH_FzhMON0lmBhSitDum8RIzZ5UswPV7EB158mc8eLP2ez1v0yYBWwnuMm1tv_jqfeXa7Ij_wQoy_Ac</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Arora, Leena</creator><creator>Patra, Debarun</creator><creator>Roy, Soumyajit</creator><creator>Nanda, Sidhanta</creator><creator>Singh, Navneet</creator><creator>Verma, Anita K.</creator><creator>Chakraborti, Anuradha</creator><creator>Dasgupta, Suman</creator><creator>Pal, Durba</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2599-2299</orcidid><orcidid>https://orcid.org/0000-0001-8306-7558</orcidid><orcidid>https://orcid.org/0000-0002-1577-8195</orcidid><orcidid>https://orcid.org/0000-0001-7672-3529</orcidid></search><sort><creationdate>202405</creationdate><title>Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration</title><author>Arora, Leena ; Patra, Debarun ; Roy, Soumyajit ; Nanda, Sidhanta ; Singh, Navneet ; Verma, Anita K. ; Chakraborti, Anuradha ; Dasgupta, Suman ; Pal, Durba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3' Untranslated regions</topic><topic>Adenocarcinoma</topic><topic>Adenocarcinoma of Lung - genetics</topic><topic>Adenocarcinoma of Lung - metabolism</topic><topic>Adenocarcinoma of Lung - pathology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>CCL2</topic><topic>Cell culture</topic><topic>Cell Hypoxia - genetics</topic><topic>Cell Line, Tumor</topic><topic>Chemokine CCL2 - genetics</topic><topic>Chemokine CCL2 - metabolism</topic><topic>Chemokines</topic><topic>Cobalt</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>DNA</topic><topic>Down-regulation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Health aspects</topic><topic>HIF‐1Α</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Immunomodulation</topic><topic>Infiltration</topic><topic>Leukocyte migration</topic><topic>Ligands</topic><topic>LUAD</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Lungs</topic><topic>Macrophages</topic><topic>Metastases</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>miR‐210‐3p</topic><topic>Molecular modelling</topic><topic>Monocyte chemoattractant protein 1</topic><topic>monocyte infiltration</topic><topic>Monocytes</topic><topic>Monocytes - metabolism</topic><topic>Monocytes - pathology</topic><topic>mRNA</topic><topic>Olefins</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Scientific equipment and supplies industry</topic><topic>Spheroids</topic><topic>Transcription factors</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arora, Leena</creatorcontrib><creatorcontrib>Patra, Debarun</creatorcontrib><creatorcontrib>Roy, Soumyajit</creatorcontrib><creatorcontrib>Nanda, Sidhanta</creatorcontrib><creatorcontrib>Singh, Navneet</creatorcontrib><creatorcontrib>Verma, Anita K.</creatorcontrib><creatorcontrib>Chakraborti, Anuradha</creatorcontrib><creatorcontrib>Dasgupta, Suman</creatorcontrib><creatorcontrib>Pal, Durba</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arora, Leena</au><au>Patra, Debarun</au><au>Roy, Soumyajit</au><au>Nanda, Sidhanta</au><au>Singh, Navneet</au><au>Verma, Anita K.</au><au>Chakraborti, Anuradha</au><au>Dasgupta, Suman</au><au>Pal, Durba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration</atitle><jtitle>Molecular oncology</jtitle><addtitle>Mol Oncol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>18</volume><issue>5</issue><spage>1278</spage><epage>1300</epage><pages>1278-1300</pages><issn>1574-7891</issn><eissn>1878-0261</eissn><abstract>In most cancers, tumor hypoxia downregulates the expression of C‐C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung‐adenocarcinoma human samples for hypoxia‐inducible factor 1‐alpha (HIF‐1A), microRNA‐210‐3p (mir‐210‐3p), and CCL2 levels. Mechanistic studies were performed on lung adenocarcinoma cell lines and 3D tumor spheroids to understand the role of hypoxia‐induced miR‐210‐3p in the regulation of CCL2 expression and macrophage polarization. HIF‐1Α stabilization increases miR‐210‐3p levels in lung adenocarcinoma and impairs monocyte infiltration by inhibiting CCL2 expression. Mechanistically, miR‐210‐3p directly binds to the 3′untranslated region (UTR) of CCL2 mRNA and silences it. Suppressing miR‐210‐3p substantially downregulates the effect of hypoxia on CCL2 expression. Monocyte migration is significantly hampered in miR‐210‐3p mimic‐transfected HIF‐1A silenced cancer cells. In contrast, inhibition of miR‐210‐3p in HIF‐1A‐overexpressed cells markedly restored monocyte migration, highlighting a direct link between the miR‐210‐3p level and tumor monocyte burden. Moreover, miR‐210‐3p inhibition in 3D tumor spheroids promotes monocyte recruitment and skewing towards an antitumor M1 phenotype. Anti‐hsa‐miR‐210‐3p‐locked nucleic acid (LNA) delivery in a lung tumor xenograft zebrafish model caused tumor regression, suggesting that miR‐210‐3p could be a promising target for immunomodulatory therapeutic strategies against lung adenocarcinoma.
Hypoxia‐associated stabilization of HIF‐1A markedly enhanced miR‐210‐3p expression, which directly targets CCL2 downregulation in lung adenocarcinoma, resulting in impaired monocyte infiltration and the stimulation of macrophage TAM polarization. Inhibition of miR‐210‐3p promoted monocyte recruitment and skewed towards an M1 phenotype in 3D tumor spheroids and a tumor xenograft model. Targeting miR‐210‐3p could be an effective therapeutic strategy for the management of lung adenocarcinoma.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>35658112</pmid><doi>10.1002/1878-0261.13260</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2599-2299</orcidid><orcidid>https://orcid.org/0000-0001-8306-7558</orcidid><orcidid>https://orcid.org/0000-0002-1577-8195</orcidid><orcidid>https://orcid.org/0000-0001-7672-3529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-7891 |
ispartof | Molecular oncology, 2024-05, Vol.18 (5), p.1278-1300 |
issn | 1574-7891 1878-0261 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e58c5ebc3fec48f9932ddecd102c1a0c |
source | Open Access: PubMed Central; Wiley Online Library Open Access; Publicly Available Content Database |
subjects | 3' Untranslated regions Adenocarcinoma Adenocarcinoma of Lung - genetics Adenocarcinoma of Lung - metabolism Adenocarcinoma of Lung - pathology Animals Antibodies CCL2 Cell culture Cell Hypoxia - genetics Cell Line, Tumor Chemokine CCL2 - genetics Chemokine CCL2 - metabolism Chemokines Cobalt Deoxyribonucleic acid Development and progression DNA Down-regulation Gene expression Gene Expression Regulation, Neoplastic Health aspects HIF‐1Α Humans Hypoxia Hypoxia-inducible factor 1 Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Hypoxia-inducible factor 1a Immunomodulation Infiltration Leukocyte migration Ligands LUAD Lung cancer Lung Neoplasms - genetics Lung Neoplasms - metabolism Lung Neoplasms - pathology Lungs Macrophages Metastases MicroRNA MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miRNA miR‐210‐3p Molecular modelling Monocyte chemoattractant protein 1 monocyte infiltration Monocytes Monocytes - metabolism Monocytes - pathology mRNA Olefins Phenotypes Proteins Scientific equipment and supplies industry Spheroids Transcription factors Tumor cell lines Tumors Zebrafish |
title | Hypoxia‐induced miR‐210‐3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%E2%80%90induced%20miR%E2%80%90210%E2%80%903p%20expression%20in%20lung%20adenocarcinoma%20potentiates%20tumor%20development%20by%20regulating%20CCL2%20mediated%20monocyte%20infiltration&rft.jtitle=Molecular%20oncology&rft.au=Arora,%20Leena&rft.date=2024-05&rft.volume=18&rft.issue=5&rft.spage=1278&rft.epage=1300&rft.pages=1278-1300&rft.issn=1574-7891&rft.eissn=1878-0261&rft_id=info:doi/10.1002/1878-0261.13260&rft_dat=%3Cgale_doaj_%3EA798121268%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6020-64b6b07959865479d526bdf271941d0f8fb7d2d81d0fd729db38f79fe8bc76c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051765111&rft_id=info:pmid/35658112&rft_galeid=A798121268&rfr_iscdi=true |