Loading…

Genetic algorithm optimization for parametrization, digital twinning, and now-casting of unknown small- and medium-scale PV systems based only on on-site measured data

Accurately predicting and balancing energy generation and consumption are crucial for grid operators and asset managers in a market where renewable energy is increasing. To speed up the process, these predictions should ideally be performed based only on on-site measured data and data available with...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in energy research 2023-06, Vol.11
Main Authors: Guzman Razo, Dorian Esteban, Madsen, Henrik, Wittwer, Christof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurately predicting and balancing energy generation and consumption are crucial for grid operators and asset managers in a market where renewable energy is increasing. To speed up the process, these predictions should ideally be performed based only on on-site measured data and data available within the monitoring platforms, data which are scarce for small- and medium-scale PV systems. In this study, we propose an algorithm that can now-cast the power output of a photovoltaic (PV) system with high accuracy. Additionally, it offers physical information related to the configuration of such a PV system. We adapted a genetic algorithm-based optimization approach to parametrize a digital twin of unknown PV systems, using only on-site measured PV power and irradiance in the plane of array. We compared several training datasets under various sky conditions. A mean deviation of −1.14 W/kW p and a mean absolute percentage deviation of 1.81% were obtained when we analyzed the accuracy of the PV power now-casting for the year 2020 of the 16 unknown PV systems used for this analysis. This level of accuracy is significant for ensuring the efficient now-casting and operation of PV assets.
ISSN:2296-598X
2296-598X
DOI:10.3389/fenrg.2023.1060215